Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
College aantekeningen Meten Van Fysische Grootheden €6,49   Ajouter au panier

Notes de cours

College aantekeningen Meten Van Fysische Grootheden

 9 vues  0 achat
  • Cours
  • Établissement

Hoorcollege aantekeningen Meten van Fysische Grootheden, tweede jaar bewegingswetenschappen, bovendien vak voor de premaster bewegingswetenschappen. Erg uitgebreide aantekeningen.

Aperçu 4 sur 55  pages

  • 27 juin 2022
  • 55
  • 2020/2021
  • Notes de cours
  • R.j. van beers
  • Toutes les classes
avatar-seller
Hoorcolleges Meten van Fysische Grootheden
Hoorcollege 1:
Meten is de belangrijkste manier om kennis over ons bewegen te verkrijgen. Binnen
bewegingswetenschappen twee soorten metingen:
- Sociaalwetenschappelijk
- Natuurwetenschappelijk
Deze cursus: natuurwetenschappelijke metingen, d.w.z. metingen van fysische
grootheden, zoals afstand, massa, tijd en kracht.
“Meten is weten”  er is meer nodig dan alleen meten: metingen uitwerken
(analyseren) en resultaten interpreteren.
Meten en verwerken van data:
Apps doen 2 dingen: metingen verrichten en metingen uitwerken. In de praktijk zijn
dit taken van de bewegingswetenschapper:
- Onderzoeker: bedenken wat/hoe je gaat meten
- Meetinstrument: meten
- Apparatuur: voorbewerken ruwe data
- Computer: opslaan data, dataverwerking
Elke fysische grootheid heeft een eenheid:
- Afstand: meter (m)
- Kracht: newton (N = kg m/s2)
Meten = bepalen hoeveel eenheden een grootheid groot is.
Kalibreren en ijken:
Kalibreren = ijken = aanbrengen van schaalverdeling (eenheid omzetten in een
andere)
- Soms: kalibreren = bepalen omrekeningsfactor
- Vaak meer werk: bepaal kalibratielijn
o Vaak: meetinstrument geeft waarde niet in juiste eenheid maar als
elektrische spanning (in volt)
o Kalibreren dan: bepalen hoe je volts omrekent naar juiste eenheid

Voorbeeld: kalibratie van krachtopnemer:
- Bekende krachten (gewichten): 9.8, 245, 490, 735, 980 N
- Krachtopnemer geeft aan: 225, 387, 1024, 1511, 1548 mV
Stappenplan:
1. Maak grafiek
2. Bepaal kalibratielijn: y = ax + b
o In Matlab doe je dit met: coef = polyfit(x,y,1). 1 staat voor lineaire lijn.
Coef wordt een matrix die a en b bevat.

, o Polyfit: kleinste kwadraten methode: verticale afstand van punten naar
lijn kwadrateren en bij elkaar optellen. Dit wordt geminimaliseerd.
3. Resultaat:
o a = 1.55 mV/N: gevoeligheid
o b = 176 mV: offset




Kalibreren: hoe niet?
- Niet alleen de eerste 2 meetpunten pakken, want:
o Meetpunten in te klein bereik
 Zeer gevoelig voor meetfouten
 Vooral ver van kalibratiemetingen
- Niet alleen de eerste en laatste meetpunten pakken
o Te weinig meetpunten: ook te gevoelig voor meetfouten
- Niet x en y omdraaien bij polyfit
o Als je meetfouten toeschrijft aan onafhankelijke variabele krijg je een
andere lijn (dan gaat het over de horizontale lengtes van de punten)
Onafhankelijke variable = x (werkelijke kracht)
Afhankelijke variabele = de gemeten waardes = y
Toepassen in voorbeeld hierboven: stel, je hebt goed gekalibreerd en meet 1260 mV,
hoeveel N is dit?
- Kalibratielijn: y = ax + b
o A en b zijn bekend door polyfit
- Schrijf dit om:
Signalen:
Veel metingen: grootheid gemeten als functie van de tijd. Signaal: waarde van
grootheid als functie van de tijd.
Onderverdeling van signalen:
- Naar tijdstip
o Continue-tijd signalen
 Signaal bestaat altijd
o Discrete-tijd signalen
 Signaal bestaat alleen op bepaalde tijdstippen

, - Naar waarde
o Continue signalen
 Signaal kan elke mogelijke waarde
hebben
o Discrete signalen
 Alleen discrete waarden kunnen
bestaan
Continue continue-tijd signalen: analoge signalen
Discrete discrete-tijd signalen: digitale signalen
Periodiciteit:

- Zuiver periodiek: signaal herhaalt zichzelf exact: x(t + T)
= x(t), met T de periode
- Periodiek: signaal herhaalt zichzelf ongeveer, niet exact
- Niet-periodiek: alle andere signalen
Representatie van signalen:
Eerste dat je doet nadat je signaal hebt gemeten: bekijk het!
Signaal als functie van de tijd kun je omzetten naar y als functie
van x.
Gebruik altijd aslabels: welke grootheid en eenheid. En gebruik waar nodig
legenda’s.
Y als functie van x: gebruik dezelfde schaling voor beide assen! Matlab: axis equal
Representatie van signalen: 3D
- In matlab: plot3
- 3D data: 3D plots
- Projecties op drie onderling loodrechte vlakken
Faseportret: plot van afgeleide van (1D) signaal als functie van signaal zelf (zoals:
snelheid als functie van positie)
- Vaak interessant voor (zuiver) periodieke signalen
Hoorcollege 2 – Fourier-analyse en bewegingsregistratie:
Probleem bij veel metingen:
- Gemeten signaal bevat stoorsignalen
- Vaak zijn stoorsignalen te verwijderen met een geschikt filter
- Essentieel om werking van filter te begrijpen: welke frequenties in een signaal
voorkomen (Fourier-analyse)
Idee van Fourier-analyse:
- Signalen: elk signaal is een combinatie van basissignalen

, - Basissignalen: sinusvormige signalen met verschillende frequenties
Dit college voornamelijk zuiver periodieke analoge signalen: herhalen zichzelf
exact en kunnen op elk moment elke waarde aannemen.




Zowel de zaagtand als de blokgolf kan goed benaderd worden door de som van
sinussen met toenemende frequenties. Je begint met de sinus met dezelfde periode
als het signaal.




Fourier (1768-1830): zuiver periodiek signaal is de som van oneindige rij sinussen en
cosinussen met toenemende frequenties = Fourierreeks
Signalen hebben een periode: T
Hierbij horen:
- Frequentie (Hz): f = 1/T
- Signalen: sin(2π ft), cos(2π ft)
Maar makkelijker is:
- Grondfrequentie: Ω = 2π f = 2π/T  is een hoekfrequentie (rad/s)
- Signalen: sin(Ωt), cos(Ωt)
Grondfrequentie: Ω = 2π/T
- Dit is de laagste hoekfrequentie in de reeks
- Andere hoekfrequenties in de reeks zijn veelvouden hiervan: kΩ (k = 0, 1, 2…)
- Hierbij horen signalen: sin(kΩt), cos(kΩt)
- Reeks voor blokgolf: x(t) = 1sin(Ωt) + 1/3 sin(3Ωt) + 1/5 sin(5Ωt) +…
o De getallen voor de sin heten Fourier-coëfficiënten
o Hoe hoger de waarde van dit getal, hoe sterker het signaal aanwezig is

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur jannevanbussel. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

73314 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,49
  • (0)
  Ajouter