Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Hoofdstuk 5: Genererende Functies €3,48
Ajouter au panier

Resume

Samenvatting Hoofdstuk 5: Genererende Functies

 28 vues  0 fois vendu

Dit is de samenvatting van het vijfde hoofdstuk van het vak Discrete Wiskunde. In deze samenvatting werd zowel alle informatie uit de slides als bijkomende informatie uit eigen notities en de cursustekst opgenomen.

Aperçu 2 sur 7  pages

  • 27 juillet 2022
  • 7
  • 2020/2021
  • Resume
  • genererende functies
Tous les documents sur ce sujet (7)
avatar-seller
lennyS
Hoofdstuk 5: Genererende functies
1 Voorbeelden en definitie
Voorbeeld:
Een moeder koopt 12 snoepjes en wil die verdelen onder haar drie kinderen: Piet, Andres en Jan. Wel
zo dat Piet er minstens 4 krijgt, Andres en Jan minstens 2 en Jan hoogstens 5.

Noteren we cP , cA en cJ voor het aantal snoepjes dat Piet, Andres en Jan respectievelijk krijgen,
hebben we cP + cA + cJ = 12 en cP >= 4, cA >= 2 en 5 >= cJ >= 2.

We kunnen alle oplossingen opschrijven:




We hebben dus 12 op alle mogelijke manieren geschreven als som van drie natuurlijke getallen die
voldoen aan de voorwaarden. Dit doen we eigenlijk ook als we de distributiviteit toepassen bij het
uitwerken van volgend product van veeltermen:



De eerste factor komt overeen met het feit dat de toegelaten waarden voor cP enkel 4, 5, 6, 7 en 8
zijn. De tweede factor ontstaat uit de opmerking dat een oplossing steeds een cA zal hebben in {2, 3,
4, 5, 6}. In het product komt de coëfficiënt van x12 overeen met alle mogelijke manieren om x12 te
bekomen door een term te nemen in elk van de drie factoren. Dus is de oplossing van het vraagstuk
ook de coëfficiënt van x12 in het product van veeltermen.

Tweede voorbeeld:
We hebben grote hoeveelheden knikkers van vier kleuren : rood, groen, wit en zwart. Op hoeveel
manieren kan je 24 knikkers kiezen zo dat er een even aantal witte is en minstens 6 zwarte.

We maken een veelterm die een factor heeft voor elke kleur. Op de rode of groene knikkers is er
geen beperking : er kunnen geen, 1, 2, . . . , 17 of 18 (niet meer want minstens 6 knikkers zijn zwart)
knikkers zijn van die kleur. Dit geeft voor beide kleuren een factor (1+x+x2+· · ·+x18). De factor van de
witte knikkers bevat enkel even machten : (1+x2+x4+· · ·+x18). Aangezien er minstens 6 zwarte
knikkers zijn, krijgen we een factor (x6+x7+· · ·+x24).

Het antwoord op de vraag is dus gelijk aan de coëfficiënt van x24 in het product:




Definitie:
Zij a0, a1, a2, . . . een rij van reële getallen. De genererende functie voor die rij is per definitie


𝑓(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2 𝑥 + ⋯ = ∑ 𝑎𝑖 𝑥 𝑖
2

𝑖=0




1

, Voorbeeld:
𝑛 𝑛 𝑛 𝑛 𝑛
De genererende functie van de rij ( ) , ( ) , ( ) , … , ( ) , 0,0, … is ∑𝑛𝑖=0( )𝑥 𝑖 = (1 + 𝑥)𝑛 .
0 1 2 𝑛 𝑖
Voorbeeld:
We weten zeer goed dat (1 − x)(1 + x + x2 + · · · + xn) = 1 − xn+1 , waaruit volgt

1 − 𝑥 𝑛+1
= 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥𝑛
1−𝑥
Bijgevolg is bovenstaande breuk een een genererende functie voor de rij 1,1,1,…,1,0,0… (n+1 enen).

Voorbeeld:




2 Veralgemeende binomiaalcoëfficiënten
Wat is het volgende getal in de rij 0, 2, 6, 12, 20, 30, 42 …?

Merk op dat →




2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lennyS. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €3,48. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52510 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€3,48
  • (0)
Ajouter au panier
Ajouté