Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Hoofdstuk 2: Eenvoudige Principes van de Discrete Wiskunde €3,48   Ajouter au panier

Resume

Samenvatting Hoofdstuk 2: Eenvoudige Principes van de Discrete Wiskunde

 65 vues  0 fois vendu

Dit is de samenvatting van het tweede hoofdstuk van het vak Discrete Wiskunde. In deze samenvatting werd zowel alle informatie uit de slides als bijkomende informatie uit eigen notities en de cursustekst opgenomen.

Aperçu 2 sur 10  pages

  • 27 juillet 2022
  • 10
  • 2020/2021
  • Resume
Tous les documents sur ce sujet (7)
avatar-seller
lennyS
Hoofdstuk 2: Eenvoudige principes van de
discrete wiskunde
1 De duiventil
Stelling (principe van de duiventil):
Als we n identieke objecten verdelen over k dozen met n > k, dan is er minstens 1 doos met
minstens 2 objecten.
Bewijs:
Uit het ongerijmde:
Veronderstel van niet. Dan is er in elke doos hoogstens 1 object. Zij m het aantal lege dozen.
Dan zijn er in totaal k – m dozen met juist 1 object. Vermits alle objecten verdeeld werden,
geldt:
𝑛 =𝑘−𝑚 ≤𝑘 <𝑛
En dat is een tegenspraak. ∎

1.1 Toepassing duiventil
Gevolg van de duiventil:
In de eerste 2013 elementen van de rij 7, 77, 777, … zit minstens 1 veelvoud van 2013.
Bewijs:
We noteren de eerste elementen van de rij 𝑎1 , 𝑎2 , … , 𝑎2013. Voor twee getallen a en b kunnen
we steeds quotiënt q en rest r bepalen zodat 𝑎 = 𝑞𝑏 + 𝑟 met 0 ≤ 𝑟 < 𝑏. Doe dit nu voor alle
getallen in de rij. Dus ∀ 𝑖 ∈ {1, … ,2013} bepalen we de 𝑞𝑖 en 𝑟𝑖 zo dat 𝑎𝑖 = 2013𝑞𝑖 + 𝑟𝑖 .
Als er een i bestaat met ri = 0, dan is ai deelbaar door 2013 en is er niets meer te bewijzen.
Veronderstel nu, uit het ongerijmde, dat geen enkele ri nul is. Dan is {𝑟1 , 𝑟2 , … , 𝑟2013 } een
deelverzameling van {1, 2, …, 2012}, de mogelijk niet-nulle resten bij deling door 2013. De
duiventil leert ons minstens 2 resten gelijk zijn. Dus ∃𝑖 ≠ 𝑗 ∈ {1,2, … ,2013} met 𝑟𝑖 = 𝑟𝑗 . We
mogen, zonder verlies van algemeenheid, aannemen dat 𝑎𝑖 > 𝑎𝑗 .

Bekijk nu het verschil 𝑎𝑖 − 𝑎𝑗 . Dit is enerzijds gelijk aan:




Of dus 𝑎𝑖 − 𝑎𝑗 = 77 … 77 × 10𝑗 .

Anderzijds is 𝑎𝑖 − 𝑎𝑗 = (2013𝑞𝑖 + 𝑟𝑖 ) − (2013𝑞𝑗 + 𝑟𝑗 ) = 2013(𝑞𝑖 − 𝑞𝑗 ) + 0, aangezien 𝑟𝑖 = 𝑟𝑗 .
Dus 𝑎𝑖 − 𝑎𝑗 = 𝑎𝑖−𝑗 × 10𝑗 is een veelvoud van 2013. Dit wil zeggen dat 𝑎𝑖−𝑗 × 10𝑗 deelbaar is
door 2013, maar vermits 10𝑗 geen enkele deler gemeenschappelijk heeft met 2013, moet
𝑎𝑖 − 𝑎𝑗 een veelvoud zijn van 2013. We bekomen een tegenspraak en dus is het
tegengestelde bewezen. ∎

1

, Notatie:
Zij 𝑥 ∈ ℝ. Dan noteren we:
⌈𝑥⌉ = 𝑘𝑙𝑒𝑖𝑛𝑠𝑡𝑒 𝑔𝑒ℎ𝑒𝑒𝑙 𝑔𝑒𝑡𝑎𝑙 ≥ 𝑥
⌊𝑥⌋ = 𝑔𝑟𝑜𝑜𝑡𝑠𝑡𝑒 𝑔𝑒ℎ𝑒𝑒𝑙 𝑔𝑒𝑡𝑎𝑙 ≤ 𝑥

Veralgemeende duiventil:
𝑛
Als je n identieke objecten verdeelt over k dozen, dan is er minstens 1 doos met minstens ⌈ ⌉
𝑘
objecten. Het bewijs is analoog met dat van de gewone duiventil.

1.2 Toepassing veralgemeende duiventil
In een groep van 6 mensen zijn elke 2 individu’s ofwel vrienden ofwel vijanden. Men kan met
zekerheid zeggen dat er in deze groep drie mensen zijn die ofwel 2 aan 2 vrienden zijn,
ofwel 2 aan 23 vijanden.
Bewijs:
Zij A een van die personen. De overblijvende 5 personen vallen uiteen in 2 groepen: de
vrienden van A en de vijanden van A. Door het veralgemeend principe van de duiventil bevat
5
1 van die 2 groepen minstens ⌈ ⌉ = 3 personen. Onderstel dat we dus minstens 3 vrienden
2
hebben (het geval dat er minstens 3 vijanden zijn verloopt analoog). We noemen B, C, D drie
van die vrienden. Als 2 van de 3 bevriend zijn is het bewijs gedaan. Als geen 2 van de drie
vriend zijn, hebben we 3 personen gevonden die 2 aan 2 vijanden zijn. ∎




2 Eenvoudige teltechnieken
Als we objecten tellen in dozen (zoals in het vorige deel) komt het er eigenlijk op neer dat we
elementen tellen in disjuncte verzamelingen.

2.1 Tellen
Stelling:
Twee eindige verzamelingen A en B bevatten evenveel elementen als en slechts als er een
bijectie A ←→ B bestaat.
Formeel definiëren wat we bedoelen met “aantal elementen in een eindige verzameling”.

• elementen van een verzameling A tellen
o komt eigenlijk overeen mat nummeren van de elementen van A.
▪ neem een eerste element weg uit de verzameling, dan een tweede
enz. tot er geen meer zijn
• Dit resulteert in een bijectie f tussen de verzameling {1, 2, . . . , n} en A met f(i) = i-de
element van A in onze selectie.

2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lennyS. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €3,48. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€3,48
  • (0)
  Ajouter