Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Beknopte samenvatting van de toetsen uit statistiek 2 €4,49
Ajouter au panier

Resume

Beknopte samenvatting van de toetsen uit statistiek 2

 36 vues  1 fois vendu

Beknopte samenvatting van de toetsen uit statistiek 2.

Aperçu 3 sur 19  pages

  • 13 septembre 2022
  • 19
  • 2021/2022
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
Jennableyenberg
Overzicht statistiek 2
Verschillende toetsen met voorwaarden en werkwijze
Toetsen voor één populatie

T-toets voor één gemiddelde (one sample t-test)
Parametrische variant
Voorwaarden voor parametrische toetsen
ð De afhankelijke variabele is minstens gemeten op intervalniveau
ð De afhankelijke variabele is normaal verdeeld in de populatie

Formuleren van hypotheses




Stappenplan




o = steekproefgemiddelde
o = de waarde waarvoor we ons afvragen of het steekproef-gemiddelde hieraan gelijk is
o N = steekproefgrootte

df = N (steekproefgrootte) – 1


s=
å(X i - X )²
N -1




Beslissingsregels
• Overschrijdingskansen - H0 verwerpen indien
o Linkseenzijdig: 𝑃! (𝑡"̅ ) ≤ 𝛼
o Rechtseenzijdig: 𝑃$ (𝑡"̅ ) ≥ 𝛼
o Tweezijdig (indien < μ0): 𝑃% (𝑡"̅ ) = 2 ∗ 𝑃& (𝑡"̅ ) ≤ 𝛼
o Tweezijdig (indien > μ0):𝑃% (𝑡"̅ ) = 2 ∗ 𝑃& (𝑡"̅ ) ≤ 𝛼
• Kritieke waarden – H0 verwerpen indien
o Linkseenzijdig: 𝑡"̅ ≤ − 𝑡'$()(*'
o Rechtseenzijdig: 𝑡"̅ ≥ 𝑡'$()(*'
o Tweezijdig: 𝑡"̅ ≤ − 𝑡'$()(*' of 𝑡"̅ ≥ 𝑡'$()(*'
1

,Chikwadraattoets voor frequenties (chi square goodness of fit test)
Non-parametrische variant
Voorwaarden
ð De categorieën waarvan de frequenties bestudeerd worden, moeten elkaar uitsluiten
ð 20% of minder van de categorieën heeft een verwachte frequentie kleiner dan 5
ð Geen enkele categorie heeft een verwachte frequentie van minder dan 1
ð Ordinale variabelen worden beschouwd als nominale variabelen

Formuleren van hypotheses
• Twee soorten nulhypothesen
o De eerste soort stelt dat de frequenties van alle categorieën gelijk zijn aan elkaar
H0: π1 = π2 = … = πk
H1: niet H0

o De tweede soort stelt voor elke categorie een bepaalde frequentie voorop
H0: π1 = πA ; π2 = πB ; … ; πk = πK
H1: niet H0

Stappenplan



o fo = geobserveerde frequenties
o fe = verwachte frequenties

df = k – 1
o k = aantal categorieën




.10 < r < .30 = klein effect
.30 < r < .50 = matig effect
r > .50 = sterk effect

Beslissingsregels
• Overschrijdingskansen, een mogelijkheid als we SPSS hebben



o χ²-verdeling is namelijk afhankelijk van df, dus er zijn te veel verschillende verdelingen.

• Je kritieke waarde is net als bij de t-toets afhankelijk van het aantal vrijheidsgraden (df) en ɑ



o Check tabel p.303-305 om te bepalen




2

, Toetsen voor twee populaties – onafhankelijke steekproeven

T-toets voor twee onafhankelijke steekproeven (independent sample t-test)
Parametrische variant
Voorwaarden voor parametrische toetsen
ð De afhankelijke variabele is minstens gemeten op intervalniveau
ð De afhankelijke variabele is normaal verdeeld in de populatie
û Indien not the case moet de steekproef N ≧ 30 zijn
ð De steekproeven zijn onafhankelijk van elkaar getrokken

Formuleren van hypotheses
• Nulhupothese: gemiddelde van de populatie waaruit de eerste steekproef getrokken is, is gelijk aan
het gemiddelde van de populatie waaruit de tweede steekproef getrokken is
• Alternatieve hypothese: biede gemiddelden zijn niet gelijk aan elkaar

µ = gemiddelde

Linkseenzijdig Rechtseenzijdig Tweezijdig
H0: µ1 ≥ µ2 H0: µ1 ≤ µ2 H0: µ1 = µ2
H1: µ1 < µ2 H1: µ1 > µ2 H1: µ1 ≠ µ2

Stappenplan
• Stap 1: we berekenen de F-waarde en bijhorende vrijheidsgraden
• Stap 2: we lezen de kritieke F-waarde uit de tabel af en vergelijken deze met onze F-waarde
s ²1
F=
s ² 2 Opgelet: in teller altijd de grootste s² en in de noemer altijd de kleinste s²
df1 = n1 – 1
df2 = n2 – 1

F > kritieke waarde à ongelijke varianties

Beslissingsregels F-toets
• Overschrijdingskansen - H0 verwerpen indien (enkel in SPSS)
o Pr (F) ≤ α à rechts/links eenzijdig
o Pd (F) = 2*Pr (F) ≤ α à tweezijdig

• Kritieke waarden - H0 verwerpen indien
o F ≥ 3 à rechts/links eenzijdig (we nemen α = .05 in de tabel)
o F ≥ 3.7 à tweezijdig (we nemen α = .05/2 = .025 in de tabel)

Indien gelijke varianties:
• Stap 3: we berekenen de gepoolde variantie
(n1 - 1)s ²1 + (n2 - 1)s ² 2
s² p =
(n1 - 1) + (n2 - 1)
• Stap 4: we berekenen met de uitkomsten van de gepoolde variantie de standaardfout van de
steekproevenverdeling
s² p s² p
s X 1- X 2 = +
n1 n2
3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Jennableyenberg. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

58716 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€4,49  1x  vendu
  • (0)
Ajouter au panier
Ajouté