Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Experimenteel en Correlationeel onderzoek week 2 - Enkelvoudige lineaire regressie €4,99   Ajouter au panier

Resume

Samenvatting Experimenteel en Correlationeel onderzoek week 2 - Enkelvoudige lineaire regressie

 4 vues  0 fois vendu
  • Cours
  • Établissement

Samenvatting over de stof uit week 2 van Experimenteel en Correlationeel onderzoek, met als hoofdonderwerp: Enkelvoudige lineaire regressie.

Aperçu 1 sur 4  pages

  • 15 septembre 2022
  • 4
  • 2019/2020
  • Resume
avatar-seller
Samenvatting week 2 Experimenteel en Correlationeel onderzoek

Deze week hebben we het over enkelvoudige lineaire regressie.

Een regressie maakt het mogelijk om de ene variabele uit één of meerdere
andere variabelen te voorspellen a.d.h.v. een predictor (X) en een respons (Y).

Een predictor variabele is een onafhankelijke voorspeller voor de afhankelijke
respons variabele.

Voorbeeld:
Cijfer voor IMT & cijfer voor TS
Predictor => Cijfer voor IMT (eerste meting die basis legt, goede voorspeller voor
later)
Respons => Cijfer voor TS (volgt daarna en kan beïnvloed zijn door de resultaten
van eerder)

Op het moment dat er één predictor variabele aanwezig is, spreken we over
enkelvoudige lineaire regressie.
Zijn er twee of meer predictor variabelen, dan spreken we over meervoudige
lineaire regressie. Dit laatste komt later in de cursus aan bod.


Ongestandaariseerde regressievergelijking
Om een ongestandaardiseerde regressievergelijking op te stellen, maken we
gebruik van de volgende formule  ^y = b0 + b1 x
NB. ^y staat hier voor een voorspelde waarde/een schatting.

Hierbij is b0 de voorspelde waarde van y als x=0, ook wel het intercept. Te
berekenen door  b0 = y – b1 ∙ x

En b1 is de hoeveelheid verschil in ^y als x met een punt stijgt, ook wel de slope.
Te berekenen door  b1 = r ∙(SY : SX)

Error/Residu (ei ) = geobserveerde waarde (yi ) − voorspelde waarde ( ^y i )
Wanneer deze minimaal is, zal de regressielijn het best passend zijn.




Regressielijn tekenen
Nadat je de regressievergelijking hebt opgesteld, kun je de lijn in de scatterplot
intekenen. Dit doe je door één voor één de x-waardes in de formule in te vullen

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur IsaN99. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

81113 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€4,99
  • (0)
  Ajouter