HF1: Eigenschappen & strategieën van cellen
1. Eigenschappen & strategieën van cellen
hoe functioneren cellen in speci eke context?
-> door variaties in algemene karakteristieken:
- complexiteit organisatie
- moleculaire componenten
- grootte & vorm
- specialisatie
2. Indeling van cellen in functie van organisatie & functie
- verschillende types van cellulaire organisatie
* moleculair: DNA, RNA, eiwitten, …
* morfologisch: groot, klein, bol, …
* funtioneel: contractie, secretie, …
- indeling levensvormen: prokaryoten <—> eukaryoten OF bacteria <—> archaea <—> eukarya
-> obv aan/afwezigheid van -> obv 3 levensdomeinen
membraanomgeven (hoogste rang fylogenie)
kern
-> probleem
= te simpel
+ te sterke nadruk op
morfologische karakteristiek
+ geen rekening met molec./functionele
diversiteit van prokaryoten
-> diverser dan te zien als enkel
dit bekijkt
2.1 Gelijkenissen tussen verschillende levensdomeinen
2.1.1 Bacterie + Archaea
= unicellulaire organismen
- grootte (klein)
- geen nucleus/organellen
- microtubuli & micro lamenten (actine & tubuline)
- geen exocytose/endocytose
- peptidoglycan celwand
- celdeling door ongeslachtelijke binaire deling
2.1.2 Archaea + Eukaryoten
- vorm van chromosomaal DNA (allebei versterkt door histonen, A: cirkelvormig <-> E: lineair)
- initiatie van transcriptie + translatie (eukaryote type)
2.1.3 Bacterie + Eukaryoten
- membraanfosfolipiden (glycerol-3-fosfaat + vetzuren)
2.1.4 Bacterie + Archaea + Eukaryoten
- grootte van ribosomen + # proteïnen & RNAs
=> B: 70S met 54 proteïnen en 3 RNAs
=> A: 70S met 65 proteïnen en 3/4 RNAs
=> E: 80S met 80 proteïnen en 4 RNAs
fi fi
, 2.2 Verschillen bacteria, archaea & eukarya
! kan bouw celwand wel bestuderen in plantencel, maar niet in dierlijke cel !
= vb. van cellulair proces
2.2.1 Bacteria <—> Eukarya
BACTERIA EUKARYA
- geen membraanomgeven kern - membraanomgeven kern
- circulair DNA -> geen histonen - lineair DNA -> chromosomen & histonen
- geen RNA processing - RNA processing
- alles door elkaar in plasma (geen organellen) - compartimentering dmv organellen
vb. Golgi, lysosomen, …
==> functionele specialisatie
2.3 Speci eke eigenschappen van eukarya
2.3.1 Cytoskelet
(ook meer rudimentaire vorm in bacteriën)
= micro lamenten (actine) + microtubuli + intermediaire lamenten
==> zorgen voor structuur & vorm vd cel
2.3.2 Exo/endocytose, vesiculair transport
gebeurt langs cytoskelet:
- transport tss organellen
- endocytose = opname moleculen
exocytose = afgave moleculen
- secretorische route & endocytosische route
2.4 Virus
≠ levend systeem
2.4.1 Structurele eigenschappen
- grootte: 25-300 nm
opbouw:
- kern (genoom) -> DNA of RNA
-> enkelstrenig of dubbelstrengig
- capside/eiwitmantel: 1/verschillende types eiwitten
- geen cytoplasma/organellen/ribosomen
- soms membraanenveloppe
2.4.2 Infectieuze cyclus (pathogene eigenschappen)
* binnendringen van gastcel: speci citeit/tropisme bepaalt ziektepatroon
* ontmanteling van virus
* replicatie van virale componenten (via processen gastcel)
* assemblage nieuwe viruspartikels
* vrijstelling viruspartikels (verspreiding naar andere cellen)
fi fi fi fi
, 2.4.3 Diversiteit
- grootte & vorm
- opbouw: DNA <-> RNA
+ componenten van eiwitmantel
+ membraanenveloppe
- infectieuze cyclus: gastcel (bacterie, plant, dier, mens, …)
+ e ect op gastcel (lysis, cytopathie, …)
3. Evolutie: tree of life
uit oercel komen bacterie + archaea + eukaryoten
=> lijken allemaal evenveel op de oercel & oercel lijkt evenveen op alle levensdomeinen
=> oercel = gemeenschappelijke voorouder
-> hieruit evolutie van alle levensvormen
4. Celgrootte
variaties
-> bacteria/archaea: 1μm - 5 μm
-> eukarya: 10 μm - 100 μm (soms ook meters lang (axonen bvb))
4.1 Beperking in celgrootte
4.1.1 Oppervlakte/volume verhouding
=> capaciteit van membraantransport
* volume van de cel
-> hoe groter de cel, hoe meer moleculen uitgewisseld moeten worden
(opname & afgave van ionen, glucose, AZ, …)
WANT: als groter, meer nood aan bouwstenen
* oppervlakte van de cel
-> bepaalt transportcapaciteit voor uitwisseling met extracellulaire ruimte
-> bepaalt communicatiecapaciteit met signaalmoleculen, naburige cellen, …
-> volume stijgt sneller dan transportcapaciteit?
* grotere cel => kleinere oppervlakte/volume verhouding
DUS: proportioneel kleinere transportcapaciteit in vgl met cellulaire nood
hoe capaciteit van membraantransport vergroten?
membraanoppervlak vergroten dmv instulpingen
-> microvili in cellen met absorptiefunctie
vb. darmepitheel, nierepitheel, …
(want moet zoveel mogelijk voedingssto en opnemen)
4.1.2 Di usiesnelheid van moleculen
= moleculair transport + niet-gericht proces
moleculen in cytoplasma bewegen door di usie:
- passief proces: hoge —> lage concentratie (neutrale moleculen)
- willekeurig in 3 dimensies
- hoe groter afstand, hoe groter di usietijd
t = x 2 /2D (met D = di usiecoë cient, afh van molecule + OE moleculaire massa)
op bepaalde afstand wordt tijd onrealistisch
=> oplossing: hart pompt bloedt rond, zo gaat O2 rond in lichaam
ff ff ff ff ffi ff ff
, 4.1.3 Behouden van voldoende hoge concentraties
als V stijgt, en wilt [ ] constant houden
=> # mol moet stijgen
* snelheid enzymatische reacties
- concentratie aan reagentia
- concentratie aan enzym
==> bepalen kans op succesvolle binding reagentia & enzym
waarom moet concentratie behouden?
minimale concentratie is nodig
-> ander kunnen reagentia & substraat elkaar niet makkelijk genoeg vinden om te binden
hoe concentraties in stand houden bij grotere celvolumes?
compartimentalisering van cel dmv organellen
=> lokale domeinen met hoge concentraties van ionen, enzymen, …
=> functionele specialisatie
vb. als [Ca] in cytosol hoog is, niet goed want signaal voor veel reacties die niet moeten gebeuren