Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Functies van meer variabelen (Voortgezette Analyse)

Note
-
Vendu
-
Pages
22
Publié le
05-11-2022
Écrit en
2022/2023

Een samenvatting voor het vak Voortgezette Analyse, het onderdeel Functies van meer variabelen. De samenvatting is gebaseerd op colleges, maar ook op de paragrafen uit Calculus (7e druk) die behoren tot de leerstof.

Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
14.1, 14.3, 14.7, 15.2, 15.3, 15.4, 15.7
Publié le
5 novembre 2022
Nombre de pages
22
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

V O O R T G E Z E T T E A N A L YS E
FUNCTIE S VAN ME E R VARIABE LE N

, FUNCTIES VAN MEER VARIABELEN

14.1 FUNCTIES VAN MEER VARIABELEN

Functies in de vorm 𝑦 = 𝑓(𝑥) leveren een grafiek in het xy-vlak op. Er kan ook een verband bestaan
die afhankelijk is van meer variabelen, zoals het volume van een cilinder.

Een functie van twee variabelen is een voorschrift dat aan ieder geordend paar (𝑥, 𝑦) uit een
verzameling 𝐷 ⊂ ℝ2 een waarde 𝑓(𝑥, 𝑦) ∈ ℝ toevoegt. D is het domein van f en het bereik is gelijk
aan de functiewaarden {𝑓(𝑥, 𝑦)| (𝑥, 𝑦) ∈ 𝐷}. We schrijven ook vaak 𝑓(𝑥, 𝑦) = 𝑧.

√𝑥+𝑦+1
Voorbeeld: 𝑓(𝑥, 𝑦) = 𝑥−1
√3+2+1 1
𝑓(3,2) = = 2 √6
3−1
Maar wat mag je hier niet invullen uit ℝ2 ? De noemer mag niet 0 worden en de uitdrukking
onder de wortel moet altijd groter dan of gelijk aan 0 zijn.
𝑥≠1
Domein is daarom: { 𝐷𝑓 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑦 ≥ −𝑥 − 1 ∧ 𝑥 ≠ 1}
𝑥+𝑦+1 ≥ 0

In het xy-vlak ziet het domein er zo uit zoals hiernaast.




Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) = 4√𝑥 − 5𝑦 .
𝑥 − 5𝑦 ≥ 0
−5𝑦 ≥ −𝑥
1
𝑦≤ 𝑥
5
1
𝐷 = {(𝑥, 𝑦) | 𝑦 ≤ 5 𝑥}


Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) = √𝑥 2 + 𝑦 2 − 16
𝑥 2 + 𝑦 2 − 16 ≥ 0
𝑥 2 + 𝑦 2 ≥ 16
𝐷 = {(𝑥, 𝑦) | 𝑥 2 + 𝑦 2 ≥ 16}

𝑥+𝑦
Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) =
𝑥−𝑦
𝑥−𝑦 ≠ 0
𝑦≠𝑥
𝐷 = {(𝑥, 𝑦) | 𝑦 ≠ 𝑥}

ln(2−𝑥)
Voorbeeld: Bepaal het domein van 𝑓(𝑥, 𝑦) = 1−𝑥 2−𝑦2
1 − 𝑥2 − 𝑦 2 ≠ 0
𝑥2 + 𝑦 2 ≠ 1
Én 2−𝑥 > 0
−𝑥 > −2
𝑥<2
𝐷 = {(𝑥, 𝑦) | 𝑥 2 + 𝑦 2 ≠ 1 ∧ 𝑥 < 2}



2

, Als f een functie van twee variabelen is waarvan het domein D is, dan is de grafiek van f de
verzameling van alle punten (𝑥, 𝑦, 𝑧) in ℝ3 zodat 𝑧 = 𝑓(𝑥, 𝑦) en (𝑥, 𝑦) ∈ 𝐷.

Voorbeeld: Schets de grafiek van de functie 𝑓(𝑥, 𝑦) = 6 − 3𝑥 − 2𝑦 ofwel 𝑧 = 6 − 3𝑥 − 2𝑦. Dit is een
vlak. Daarom gaan we op zoek naar de snijpunten met de assen.
Als 𝑧 = 0 en 𝑦 = 0 Als 𝑧 = 0 en x= 0 Als 𝑥 = 0 en 𝑦 = 0
6 − 3𝑥 = 0 6 − 2𝑦 = 0 𝑧=6
−3𝑥 = −6 2𝑦 = −6 Dus (0,0,6)
𝑥=2 𝑦=3
Dus (2,0,0) Dus (0,3,0)




Voorbeeld: Schets de grafiek van de functie 𝑓(𝑥, 𝑦) = √9 − 𝑥 2 − 𝑦 2
9 − 𝑥2 − 𝑦 2 ≥ 0
𝑥2 + 𝑦 2 ≤ 9
𝐷𝑓 = {(𝑥, 𝑦) ∈ ℝ2 | 𝑥 2 + 𝑦 2 ≤ 9} en 𝐵𝑓 = [0,4].




Voorbeeld: Bepaal het domein en bereik van 𝑓(𝑥, 𝑦) = 4𝑥 2 + 𝑦 2 en schets de grafiek.
𝐷𝑓 = {(𝑥, 𝑦) ∈ ℝ2 } en 𝐵𝑓 = [0, ∞).

Als 𝑥 = 0 dan 𝑧 = 𝑦 2 in het yz-vlak (uitgestrekte parabool).
Als 𝑦 = 0 dan 𝑧 = 4𝑥 2 in het xz-vlak.
In het xy-vlak hebben we een parabool 4𝑥 2 + 𝑦 2 = 𝑘.

De grafiek ziet eruit zoals hiernaast en hier spreken we van een elliptische paraboloïde.


De niveaukromme van een functie f van twee variabelen zijn de krommen met vergelijking
𝑓(𝑥, 𝑦) = 𝑘 waarbij k constant is en 𝑘 ∈ 𝐵𝑓 . Waar twee niveaukrommen dicht bij elkaar liggen
betekent dit dat de oppervlakte steil is. Als je over een contourlijn ‘loopt’ zal je niet stijgen/dalen. Deze
lijn laat zien waar de functie allemaal de waarde k heeft.




3
€3,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
cdenhollander Hogeschool Windesheim
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
599
Membre depuis
8 année
Nombre de followers
526
Documents
32
Dernière vente
2 semaines de cela

Hoi, ik ben Chantal en ik zit nu in het eerste jaar van de studie tweedegraads Lerarenopleiding wiskunde op Windesheim, te Zwolle. Hiervoor heb ik bijna anderhalf jaar Bedrijfskunde gestudeerd aan de HU. Hiervoor heb ik bijna elk vak samengevat en er komen mogelijk nog meer samenvattingen aan.

3,9

153 revues

5
35
4
82
3
27
2
3
1
6

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions