Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Basis Van Onderzoeksmethoden En Statistiek () €6,49
Ajouter au panier

Resume

Summary Basis Van Onderzoeksmethoden En Statistiek ()

 5 fois vendu
  • Cours
  • Établissement

Alles uit de hoorcolleges over correlationeel en experimenteel onderzoek wat te maken heeft met NHST, BHE, SPSS, Jasp. Eigenlijk alles wat je nodig hebt voor alles met cijfers, formules, tabellen etc. Er is een duidelijk overzicht gemaakt met tussen de verschillende manier van NHST en BHE. Ook toev...

[Montrer plus]

Aperçu 3 sur 17  pages

  • 8 novembre 2022
  • 17
  • 2022/2023
  • Resume
avatar-seller
NHST Correlationeel Regressie in Correlationeel → als we Experimenteel
(relatie/samenhang) het éne weten, kunnen we dan iets (causaliteit)
zeggen over het andere, zonder dit te
vragen

Stap 1: Toetskeuze: Pearson of Spearman? Toetskeuze: regressie Bij 2 groepen:
toetskeuze, Hangt hier samen met assumpties Toetskeuze: t-toets voor onafhankelijke groepen (2
hypotheses H0 (altijd =) en H1 (>, < of ≠) opstellen. ≠ wordt groepen, vergelijken op gemiddelde)
bepalen en H0 (altijd =) en H1 (>, < of ≠) opstellen. hier bijna niet gebruikt.
H0 (altijd =) en H1 (>, < of ≠) opstellen.
significantieniveau
Opstellen met Griekse letter rho, ρ Opstellen met Griekse letter bèta, β (bij
(α) kiezen
VB: H0:  = 0 en H1:  > 0 enkelvoudige regressie en toetsing 2 bij Opstellen met Griekse letter mu, µ (gemiddelde)
multipele regressie) VB: H0 : µDI = µC en H1: µDI > µC
α: meestal .05 VB: H0: gewicht = 0 en H1: gewicht > 0 Of: H0 : µDI - µC = 0 en H1: µDI - µC > 0

Opstellen met Griekse letter rho, ρ2 (bij α: meestal .05
multipele regressie toetsing 1)
VB: H0: 2 = 0 en H1: 2 > 0 Bij meer dan 2 groepen:
Toetskeuze: ANOVA
α: meestal .05
H0 (altijd =) en H1 (>, < of ≠) opstellen.

Opstellen met Griekse letter mu, µ (gemiddelde)

H0 : DI = EI = C en H1 : minimaal één van de
gemiddelden is anders

α: meestal .05

Stap 2: assumpties Mag ik de toetskeuze gebruiken? Mag ik het resultaat vertrouwen? Assumpties voor t toets en ANOVA voor
controleren onafhankelijke groepen:
1. Meetniveau checken 1. Lineaire samenhang tussen predictor en 1. Aselecte steekproef
(interval/ratio) afhankelijke variabele 2. Afhankelijke variabele van interval/ratio
2. Lineaire samenhang checken 2. Geen uitschieters (die te veel invloed meetniveau
hebben) 3. Onafhankelijke waarnemingen/ (twee)
groepen zijn onafhankelijk

, 3. Predictoren en afhankelijke variabele 4. Geen uitschieters (milde uitschieters
minimaal interval meetniveau hebben geen invloed)
4. De predictoren mogen onderling niet te 5. Scores moeten in beide/alle groepen
veel samenhangen ((multi)collinearity) normaal verdeeld zijn (bij n ≥ 30 niet
→ alleen bij multipele regressie problematisch: robuustheid)
5. Spreiding van residuen per x-waarde 6. Scores moeten in beide/alle groepen gelijke
gelijk (homoscedasticity) spreiding hebben (bij n ≥ 30 niet
problematisch: robuustheid + levene’s test)
Bij multipele regressie: ook een
dummyvariabele mogelijk. Twee categorieën,
zoals bij sekse: man 1, vrouw 0

Stap 3: Toetsingsgrootheid bij Pearson = r Bij enkelvoudige regressie en multipele Bij twee groepen:
toetsingsgrootheid (correlation coefficient) regressie toets 2: Toetsingsgrootheid = t-waarde
en p-waarde Toetsingsgrootheid bij Spearman = rs Toetsingsgrootheid b (richtingscoëfficiënt) kan T-waarde uitrekenen door:
hier niet omdat dit afhankelijk is van de 𝑀1−𝑀2
bepalen t=
𝑆𝐸
meetschaal, variabele maat is hier niet handig SE = standaardfout = spreiding
voor. Omrekenen naar een standaardmaat: t- M = steekproefgemiddelden
waarde/t-verdeling. JASP → Independent Samples T-Test → t
Toetsingsgrootheid = t-waarde p-waarde uit JASP halen
SPSS → Coefficients → t JASP → Independent Samples T-Test → p
p-waarde uit SPSS halen JASP kan eenzijdig of tweezijdig toetsen, dus altijd
p-waarde uit SPSS halen goede p-waarde
SPSS → Coefficients → Sig.




Staat er beide twee keer in, maar is
hetzelfde. Bij p-waarde .000 →
p < .001 Let op: p-waarde is bij regressie altijd
tweezijdig, dus bij eenzijdig moet je de p-
waarde delen door twee.
Bij meer dan twee groepen:
Let op: kijken naar B in tabel of deze groter is Toetsingsgrootheid = F-waarde
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
dan 0, dan pas p-waarde delen (assumpties) F = 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛

, Bij multipele regressie toetsing 1: Spreiding binnen (within) de groepen en spreiding
Toetsingsgrootheid = F-waarde tussen (between) de groepen.

Grote F-waarde bij kleine spreiding within en grote
between. → makkelijker om te vergelijken
Kleine F-waarde bij grote spreiding within en kleine
between.




p-waarde uit SPSS halen in ANOVA




Stap 4: conclusie p-waarde > α = H0 meest waarschijnlijk p-waarde > α = H0 meest waarschijnlijk → H0 p-waarde > α = H0 meest waarschijnlijk → H0 niet
trekken over H0 → H0 niet verwerpen, resultaat is niet niet verwerpen, resultaat is niet significant verwerpen, resultaat is niet significant
significant
p-waarde < α = H1 meest waarschijnlijk → H0 p-waarde < α = H1 meest waarschijnlijk → H0
p-waarde < α = H1 meest waarschijnlijk verwerpen, resultaat is significant verwerpen, resultaat is significant
→ H0 verwerpen, resultaat is
significant

Stap 5: VB conclusie: Er is geen significante Bij regressie en multipele regressie toets 2: Bij twee groepen:
inhoudelijke positieve samenhang tussen Is de richtingscoëfficiënt significant groter dan VB conclusie: Ja, kinderen in de directe
conclusie en zelfwaardering en extraversie, r = 0? Ja, dus het is zinvol om regressie te instructiegroep hebben een significant hogere
effectgrootte .283, n = 10, p = .214, éénzijdig. gebruiken. Bij multipele regressie toets 2 alle gemiddelde rekenscore dan kinderen in de
stappen herhalen tot je alle predictoren gehad controlegroep.
bepalen
Maat voor effectgrootte bij correlatie: hebt.
correlatiecoëfficiënt (r) Effectgrootte: kijken naar verschil in
Bij multipele regressie toets 1: Ja, we kunnen groepsgemiddelden óf gestandaardiseerde maat
een significant deel van de variantie van Y gebruiken: Cohen’s d (in JASP)
verklaren door de samenhang met... Namelijk r2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur jasmijnmeijer. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

64670 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!

Récemment vu par vous


€6,49  5x  vendu
  • (0)
Ajouter au panier
Ajouté