Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Management Research Methods 1 (MRM BA1): Received grade: 8.5 () €7,99   Ajouter au panier

Resume

Summary Management Research Methods 1 (MRM BA1): Received grade: 8.5 ()

1 vérifier
 112 vues  18 fois vendu
  • Cours
  • Établissement

I made a summary of Management Research Methods 1. This summary will help you with your upcoming exam, as my grade was an 8.5. If you also do the exercises given in class, you should be fine! This summary is written for the course Management Research Methods 1 in the Pre-Master of Business Admin...

[Montrer plus]

Aperçu 4 sur 39  pages

  • 2 décembre 2022
  • 39
  • 2022/2023
  • Resume

1  vérifier

review-writer-avatar

Par: sjoertyylemmen • 1 année de cela

avatar-seller
Summary MRM BA 1
Lecture 1




Data has a fixed structure. It consists of a number of properties (variables)  each column
represents one variable.

Measured from a set of things/people/etc (units)  each row represents one unit.

Levels of measurement:
1. Categorical (entities are divided into distinct
categories):
 Binary variable (two outcomes), e.g.
dead or alive.
 Nominal variable, e.g. whether
someone is an omnivore, vegetarian
or vegan.
 Ordinal variable, e.g. bad,
intermediate, good.

2. Numerical:
 Discrete data (counts), e.g.: number of defects.
 Continuous (entities get a distinct score), e.g. temperature, body length.

Variables can be converted to a lower level of measurement. For example, from:
- Body length ≤ 160cm → small
- Body length > 160cm and < 180cm →normal
- Body length ≥ 180cm → tall
This implies a loss of information. It is not reversible. For example, if you know that “body length =
normal”, the exact amount of cm’s cannot be retrieved (herwinnen).

The lower the amount of information in your data, the larger your sample needs to be.




1

,In quantitative research, you need to motivate and document the way you collected data:
- Is the sample representative?
- Is the data valid?
- Is there measurement error?

Is the sample representative? Generalize findings in a sample to an entire population.
- Measure firm’s revenue for 3 weeks  generalize to the full 52 weeks.
- Measure outside temperature for 5 days  generalize to the entire month.
- Ask 1000 people who they will vote on at the elections  predict outcome of entire country.

Representativeness: statistics only gives conclusions about the population you have sampled from.
- Measure firm’s revenue for 3 weeks in October  conclusions not valid for July.
- Measure outside temperature for 5 days in September  conclusions not valid for whole
year.
- Ask 1000 people at Woodstock who they’ll vote on  probably not representative for
election results.

Questions to ask:
- What is the population?
- How to make my sample representative for that population?
Usually random sampling:
- Assign numbers to all units in the population.
- Let a computer draw randomly 30 numbers.
- Include these observations in your sample.

Validity: Do the data reflect what they should reflect? And can they be used to answer the research
question?
- Data should be checked for errors and mistakes (“face validity check”).
- Multiple people involved in measurement: did everybody know the measurement
procedure?
- Were there other problems / irregularities during measurement?
Measurement error: the discrepancy (verschil) between the actual value we are trying to measure,
and the number we use to represent that value. Example: you (in reality) weigh 80 kg. According to
your bathroom scale, you weigh 83 kg. The measurement error is 3 kg.


2

,! There are two types of measurement error:
1. Systematic: difference between the average measurement result and the true value. E.g.:
clocks on mobile phones are regularly synchronised with online time servers.
2. Random: unsystematic deviations (afwijkingen) due to imprecision of the measurement
system. E.g.: for ice skating at the winter olympics, multiple time measurement systems are
used to decide who is the winner.

Difference systematic error and bias  Bias general name so it’s the same.

Describing data: you usually do not recite (opsommen) an entire dataset when someone asks you
what is in it. You summarize it in a few numbers.

Median: the middle score when data is ordered. More robust against outliers in stead of the mean.

Mean: the sum of the data divided by the amount of data. This is meant by the average in statistics.




Question: what does a mean lower than median indicate? A significant discrepancy between the
median and the mean, in which the mean is lower than the median, indicates negative skewness in
the data.

Range: the smallest value subtracted from the largest. This is very sensitive to outliers.




Interquartile range: the range of the middle 50% of the data.




Variance: the average squared distance between each point and the mean of the data.



Standard deviation: the square root of the variance.



Question: why is the standard deviation preferred over the variance as the metric for dispersion to
report in analyses? Because the standard deviation is easier to interpret than the variance as it has
the same measurement unit as the variable
under consideration.

3

, dispersion = spreiding




Confidence interval:
- When we estimate something (mean, standard deviation, correlation, etc.), we make
sampling error (a different sample will contain different estimates).
- Which means: X ≠ 𝜇 in general.
- However: X will be close to or around 𝜇.
- Specifically, in 95% of cases, we will find X such that




Skew:
- The asymmetry of the distribution
- Positive skew (scores bunched at low values with the tail pointing to high values).
- Negative skew (scores bunched at high values with the tail pointing to low values).




Mode: the most frequent score
Bimodal: having two modes
Multimodal: having several modes




4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur romytempelman. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67163 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,99  18x  vendu
  • (1)
  Ajouter