Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Business Research Methods €8,34
Ajouter au panier

Resume

Summary Business Research Methods

 60 vues  4 fois vendu

Samenvatting van het vak Business Research Methods (Brushing up, logistic regression, factor analysis, reliability analysis, cluster analysis)

Aperçu 4 sur 57  pages

  • 7 décembre 2022
  • 57
  • 2022/2023
  • Resume
Tous les documents sur ce sujet (3)
avatar-seller
DieDhe
Business Research Methods
Inhoudstafel
1 Introduction ................................................................................................................ 3
1.1 What & Why? .................................................................................................................. 3
1.1.1 Transformation .............................................................................................................................. 3
1.1.2 Analysis .......................................................................................................................................... 3
1.1.3 Interpretation ................................................................................................................................ 3
2 Brushing up: Hypothesis testing and linear Regression + SPSS ..................................... 3
2.1 Hypothesis testing ........................................................................................................... 3
2.1.1 Different types of data .................................................................................................................. 3
2.1.2 Obtaining data ............................................................................................................................... 4
2.1.3 Symbols ......................................................................................................................................... 4
2.1.4 Hypothesis testing ......................................................................................................................... 4
2.2 Linear regression ............................................................................................................. 6
2.2.1 What & Why? ................................................................................................................................ 6
2.2.2 Ordinary Least Squares .................................................................................................................. 8
3 Logistic Regression .................................................................................................... 10
3.1 The logistic regression model..........................................................................................10
3.1.1 The general logistic regression model ......................................................................................... 11
3.2 Regression coefficients ...................................................................................................12
3.2.1 Estimation methods .................................................................................................................... 12
3.2.2 Interpretation in terms of probabilities....................................................................................... 13
3.2.3 Odds & Odds ratio ....................................................................................................................... 13
3.2.4 Interpretation in terms of odds (EXAM!!!) .................................................................................. 15
3.3 Hypothesis testing ..........................................................................................................17
3.3.1 Hypothesis test: Useful model? ................................................................................................... 17
3.3.2 Hypothesis test: Significant variable? .......................................................................................... 18
3.4 Quality ...........................................................................................................................19
3.4.1 Classifications .............................................................................................................................. 19
3.4.2 Hosmer and Lemeshow test ........................................................................................................ 22
3.5 The model assumptions ..................................................................................................23
3.5.1 Linearity ....................................................................................................................................... 23
3.5.2 Outliers ........................................................................................................................................ 23
3.5.3 Quasi-multicollinearity (QMC) ..................................................................................................... 23
3.5.4 Quasi-complete seperation (QCS) ............................................................................................... 24
4 Factor Analysis .......................................................................................................... 26
4.1 Correlation + Factors ......................................................................................................26
4.1.1 Aim .............................................................................................................................................. 26
4.1.2 Examples of applications ............................................................................................................. 26
4.2 Overview of how we are going to work with factor analysis ...........................................28
4.2.1 Correlation matrix ....................................................................................................................... 28
4.2.2 Factors ......................................................................................................................................... 31
4.2.3 Interpretation .............................................................................................................................. 36
4.2.4 Factor scores ............................................................................................................................... 38



1

, 4.3 Summary factor analysis .................................................................................................40
5 Reliability Analysis .................................................................................................... 41
5.1 Use .................................................................................................................................41
5.2 Scale ...............................................................................................................................41
5.3 Number of items.............................................................................................................42
5.4 Reliability of a scale ........................................................................................................42
5.4.1 Mathematical formula ................................................................................................................. 42
6 Cluster Analysis ......................................................................................................... 47
6.1 Aim.................................................................................................................................47
6.1.1 Examples...................................................................................................................................... 47
6.2 Cluster analysis methods ................................................................................................47
6.3 Hierarchical clustering ....................................................................................................48
6.3.1 Steps ............................................................................................................................................ 48
6.3.2 How?............................................................................................................................................ 48
6.4 K-means clustering .........................................................................................................55
6.4.1 Remark ........................................................................................................................................ 55
6.5 Summary ........................................................................................................................57
6.5.1 Cluster analysis: Objective ........................................................................................................... 57




2

,1 Introduction
1.1 What & Why?
BRM is about analyzing data




Data selection and cleaning = not included in this course.

1.1.1 Transformation
For the needs of the analysis, it may be necessary to recode some of the raw data. (Examples: scale into
binary, continuous into scales…)

1.1.2 Analysis
Use input (raw data) + software (SPSS, STATA, R…) + data analysis techniques to obtain outputs
(regression tables, test-statistics, indicators, etc.). Many data analysis techniques exist. Their choice
depends on the question that needs to be answered and type of data available.

1.1.3 Interpretation
Make sense of the output, i.e. be able to read the tables/indicators/statistics and explain their meaning;
use them for decision making/answering your research question.

2 Brushing up: Hypothesis testing and linear Regression + SPSS
2.1 Hypothesis testing
2.1.1 Different types of data
2.1.1.1 Qualitative data
• Nominal data: subdivide in non-overlapping groups without a logical order (you cannot rank the
group)
o Ex. Type of car, gender, city you live in…
• Ordinal data: subdivide in non-overlapping groups, but there is a logical order between the
groups
o Ex. Attitude against something, level of education…
Sometimes you define numbers to qualitative data, but the numbers don’t mean anything (ex. Female =
1, Male = 0)


3

, 2.1.1.2 Quantitative data
Ex. Price, exam score, number of customers… ® you can do real calculations.

2.1.2 Obtaining data
- Experiments
- Observation
- Survey
Sometimes we can obtain data on all individuals concerned (=population data), but usually you can only
obtain data on some individuals concerned (=sample data).

2.1.3 Symbols
Population Sample
Mean µ 𝑥̅
Variance 𝜎! s2
Proportion 𝜋 p

2.1.4 Hypothesis testing
When we want to test a statement about a population, using sample data, we perform hypothesis
testing. (When we have data on the whole population, hypothesis testing is not necessary)
A hypothesis = a statement (about a population parameter) ® We want to check whether this statement
hold on the whole population.
Hypothesis testing is a formal procedure used by statisticians to accept or reject a hypothesis.
® The formal procedure (assuming you already have the data):
1) State the hypothesis (H0 and H1)
2) Formulate analysis plan (specify formula or test statistic and the significance level)
3) Analyze data (compute value of test statistic from data)
4) Interpret result (decide if you can reject H0 in favor of H1, or not)
2.1.4.1 Null hypothesis versus alternative hypothesis
The alternative hypothesis = research hypothesis (something new, something controversial)
The proportion of students that pass the statistics exam:
H0 : 𝜋 = 0,5
H1 : 𝜋 > 0,5
The null hypothesis is always an equality.
2.1.4.2 One-sided tests versus two-sided tests
One-sided test ® H1 > x or H1 < x
Two-sided test ® H1 ≠ x
2.1.4.3 Specify the test statistic and significance level
We need a formula based on which to decide whether to reject H0 in favor of H1 (= test statistic). There
are different formulas for test statistics, depending on type of data and on hypothesis H0 and H1 (ANOVA-
test, T-test, Z-test…).
The formal testing procedure can lead to errors:
- Type 1 error: The null hypothesis is true, but we reject is (= significance level)
- Type 2 error: The null hypothesis is false, but we fail to reject is

4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur DieDhe. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €8,34. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

53068 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€8,34  4x  vendu
  • (0)
Ajouter au panier
Ajouté