Nette samenvatting van het boek Inleiding tot de Stralingshygiëne (Bos, Draaisma, en Okx) en de colleges van het RID (TU Delft) van de opleiding Stralingsbeschermingsdeskundige op het niveau van de Coördinerend Deskundige (CD). Alles wat je moet weten voor het landelijk examen voor CD'ers, inclus...
1.1 De atoomkern
• Atoomkernen bestaan uit protonen (Z) en neutronen (N) en hebben een bepaalde
atoommassa A = Z + N.
o De notatie is AmZ X*, waarbij m is metastabiel en * is aangeslagen toestand.
• Door variatie van Z en N zijn er:
o Isotopen: gelijke Z, andere N.
o Isobaren: gelijke A met andere verhouding N/Z.
o Isomeren: gelijke Z en N, verschillende energietoestand: metastabiel (m) of
grondtoestand (g).
• Een kern opgebouwd uit deeltjes (bijv. 2p + 2n → 42He2+) weegt minder dan de losse
kerndeeltjes bij elkaar opgeteld; dit heet het massadefect. Door de sterke kernkracht
kunnen de afstotende krachten tussen de geladen protonen onderling worden
overwonnen. Er is dus ook bindingsenergie nodig om de kerndeeltjes uit elkaar te halen:
E = mc2.
• De nuclidenkaart is een Z-N-
grafiek.
o De verhouding p:n is
ongeveer 1:1 voor kleine
atomen, en 1:1,5 voor
grote atomen (Z > 20).
Grotere atomen hebben
meer neutronen nodig
om stabiel te zijn.
o Vervalenergieën van β’s
worden in MeV weerge-
geven, van γ’s in keV.
1.2 Activiteit en vervalwet
• Een radioactieve bron met N actieve atoomkernen kan als volgt worden beschreven:
waarbij de vervalconstante λ [s-1] is de kans op verval per tijdseenheid. De
vervalconstante is specifiek voor het betreffende radionuclide en is omgekeerd evenredig
met de halveringstijd T1/2:
• De activiteit A [Bq, dps] van een bron is het aantal vervallende atoomkernen (=
desintegraties) per seconde en neemt altijd exponentieel af volgens de vervalwet:
o Een oude eenheid voor activiteit is de Curie: 1 Ci = 3,7 1010 Bq, ofwel 1 mCi =
37 MBq.
4
, o Het menselijk lichaam bevat zo’n 8 – 10 kBq aan natuurlijke radioactiviteit.
o De specifieke of massieke activiteit As [Bq g-1] is de activiteit per massaeenheid,
waarbij NA is het getal van Avogadro en M is de molaire massa van het nuclide.
o Als die massa niet zuiver oftewel niet-dragervrij is, bijv. omdat deze is opgelost in
een zout of inactieve atomen bevat, dan geldt voor As:
waarbij n is het aantal keren dat het atoom voorkomt in de chemische
verbinding, en fatoom is de atoomfractie van het aantal radioactieve atomen in het
element.
1.3 Soorten radioactief verval
• Door een ongunstige verhouding tussen het aantal protonen en neutronen kan de kern
instabiel zijn, met een overtollige energie. Ze streven dan naar een energetisch stabielere
situatie. De kernomzetting die volgt heet ook wel desintegratie of radioactief verval.
• Door het spontane verval van instabiele atoomkernen, oftewel radionucliden, komt
energie vrij in de vorm van ioniserende straling. Dit zijn:
o Geladen deeltjes (α, β) met voldoende kinetische energie om door botsingen
ionisaties te kunnen veroorzaken.
o Ongeladen deeltjes (n, γ) die geladen deeltjes kunnen vrijmaken of
transformaties van atoomkernen kunnen veroorzaken.
• Straling is per definitie ioniserend vanaf E > 12,4 eV (λ < 100 nm).
o Vanaf λ > 100 nm is straling niet-ioniserend; zie §16.
▪ Over de effecten van niet-ioniserende straling (bijv. radiofrequente
straling, IR, laser, UV, elektromagnetische velden) is weinig bekend.
Blootstelling aan hoge doses/sterktes kan mogelijk wel gevaarlijk zijn
voor de mens.
5
, • Overzicht van vervalwijzen.
o α-verval. Bij zware kernen wordt door neutronentekort een 42 He2+ (α)
uitgezonden van meestal tussen 3–10 MeV.
A A-4
ZX → Z-2 Y + 42 α2+ + Qα .
▪ De kern krijgt hierna een terugstootenergie van ca. 0,1 MeV.
o β‒-verval. Bij een overschot aan neutronen kan de kern een elektron (β‒)
uitzenden om een neutron te veranderen in een proton.
‒
A A 0
Z X→ Z+1 Y + -1 β + ν̅ + Qβ .
▪ Hierbij ontstaat ook een anti-neutrino.
o β+-verval.Bij een tekort aan neutronen kan de kern een positron (β+) uitzenden
om een proton te veranderen in een neutron. Dit proces vindt alleen plaats bij
vervalenergieën van 1022 keV en hoger.
A
Z X→ A
Z-1 Y + 01 β+ + ν + Qβ .
▪ Hierbij ontstaat ook een neutrino.
▪ Dit positron zal botsen met een elektron, waarbij hun massa wordt
omgezet in elektromagnetische straling, namelijk 2 fotonen van elk 511
keV. Dit proces heet annihilatie.
o Elektronenvangst (EC). Bij een tekort aan neutronen kan de kern een elektron
uit de elektronenwolk (meestal K-schil) opnemen/vangen, waardoor een proton
verandert in een neutron. EC is een zwakke wisselwerking.
A 0 A
Z X+ -1 e→ Z-1 Y + ν + QEC .
▪ De vacature in de elektronenschil zal worden opgevuld door een elektron
uit een meer naar buiten gelegen schil, waarbij karakteristieke
röntgenstraling en/of Auger-elektronen worden uitgezonden; zie onder.
▪ Elektronvangst is een alternatief voor β+-verval. De kans op EC neemt
toe met het Z-getal. Bij vervalenergieën lager dan de drempelenergie van
1022 keV voor β+-verval is EC het enige vervalproces voor kernen met
een neutronentekort.
o Isomeer verval. Na α- of β-verval blijft de kern van het gevormde nuclide vaak in
een aangeslagen/geëxciteerde toestand, dus met een energieoverschot, achter.
Door recoil kunnen in dat geval nog twee concurrerende processen plaatsvinden
die de samenstelling van de kern niet veranderen:
▪ γ-verval. De kern zendt een mono-energetisch γ-foton uit.
A
Z X* → A
Z X + γ.
▪ Interne conversie (IC). Emissie van een conversie-elektron uit één van de
binnenste schillen, dat de energie van de aangeslagen toestand meekrijgt.
6
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur sganoud. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €11,99. Vous n'êtes lié à rien après votre achat.