Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Protein technology & proteomics €20,49
Ajouter au panier

Resume

Samenvatting Protein technology & proteomics

 6 vues  0 fois vendu

Samenvatting van de cursus 'Protein technology & proteomics'

Aperçu 4 sur 170  pages

  • 29 décembre 2022
  • 170
  • 2018/2019
  • Resume
Tous les documents sur ce sujet (1)
avatar-seller
driesluyten
Samenvatting Protein Technology and
Proteomics
Hoofdstuk 1: Introductie
1.1. Definitie proteomics
 = de bepaling van de volledige set van EW’n die aanwezig zijn in een systeem, onder
specifieke omstandigheden
o Wat is een systeem  kan verschillende zaken zijn:
 EW-complex  vb. 1 EW met 3 of 4 andere EW’n complexeren
(redelijk klein)
 Subcellulair compartiment  vb. nucleus (is het grootste
compartiment) + dit is groter een groter systeem dan EW-complex
 Cel  op dit level wordt meestal op gewerkt
 Weefsel  vb. bloed, lever, hersenen
 Organisme  vb. zebravis, gist (hier de set EW’n bestuderen) <-> bij
mens niet mogelijk want te complex
o Omstandigheden kunnen zijn:
 Behandeling  vb. behandeling met anti-kanker middel of met een
carcinogeen
 Tijd na behandeling  vb. welke wijzigingen van de EW’n worden
waargenomen na 10 dag behandelen of na 10 dagen behandelen
 Conditie van de cel  vb. leeftijd, geïnfecteerd, normaal, tumor,…
o DUS: er zijn verschillende combinaties mogelijk onder dewelke de genomische
informatie dezelfde blijft, maar onder dewelke de proteomische informatie
drastisch kan veranderen

1.2. Waarom proteomics  er zijn verschillende redenen voor (hieronder)
 Vergeleken met genomics, is proteomics ‘the real thing’
o Genomics = statisch
o Proteomics  proteinen zijn werkpaarden van de cel: ze veranderen in
expressie, in configuratie omdat de meeste functies toe te schrijven zijn aan
EW’n
o Illustratief voorbeeld:
 Stel dat je veel motorfiets onderdelen hebt  kan je vergelijken met
genen die aanwezig zijn in een genoom
 Je kan veel met deze genen doen: zoeken, allignments,
sequencing,… maar er is nog steeds de set van verschillende
delen
 Proteomics is dan het veld dat de verschillende delen samenbrengt en
probeert te achterhalen hoe het hele systeem werkt
o Genoom sequencing  dit is eigenlijk 2de reden, maar hoort hieronder:

1

,  Uit deze sequencen weten we dat geschat mensen ongeveer 20-40000
genen hebben, gist 6000, drosophila 13000, aardworm 18000 en
arabidoptis 26000
 Dus: genomics kan de grote complexiteit in hogere organismen
zoals mensen, primaten, zoogdieren niet verklaren
 Een het is nog steeds moeilijk om genen te voorspellen: verifiëren van
een genproduct door proteomic-analyse is nog steeds noodzakelijk
 Als bepaald gen voorspeld wordt, moet ergens in een bepaald
stadium het corresponderende EW zijn
  = proteogenomics (combinatie van genomics en
proteomics)
 mRNA vs protein-profiling
o Er is geen directe correlatie tussen beiden: de micro-array chips (amfimetric
chips) die gebruikt worden voor mRNA expressie te meten zijn niet voldoende
om EW-expressie te meten
 Voor sommige genen is het expressie-level van mRNA laag, terwijl de
EW-expressie hoog is
 Voor andere genen is het expressie-level van mRNA hoog, terwijl de
EW-expressie laag is
o Zie grafiek concentratie van EW’n over concentratie van mRNA: je verwacht
misschien een diagonaal-correlatie, maar in werkelijkheid is er totaal geen
perfecte diagonaal: als mRNA-expressie stijgt, EW-expressie stijgt niet
noodzakelijk
 Vb. in vele gevallen is er een variërende expressie van mRNA, maar
het level van EW’n blijft ongeveer hetzelfde
 Er zijn meer (6 tot 8) EW’n dan genen
o Door post-translationele modificatie = PTM’s
 Na transcriptie en translatie tot EW kunnen er verschillende
modificaties gebeuren
 Vb. fosforylatie, glycosylatie, acetylatie, methylatie, ubiquitinylatie,..
 EW’n functioneren in vele gevallen slechts door de types van post-
translationele modificaties die ze hebben
 Vb. fosforylatie kan een ander kinase activeren of het kan een
andere kinase deactiveren  dat kinase kan dan cascade van
fosforylatie in gang zetten
o Door alternatieve splicing (op mRNA level)  zo ° er verschillende isovormen
van een bepaald EW
 Er kan gewone splicing gebeuren  translatie dan en dan krijg je EW
 Maar dan kan ook vanuit dat mRNA alternatieve splicing gebeuren 
na translatie kunnen dan stukken toegevoegd zijn aan het EW of delen
verdwenen zijn
 Vb. α-1-antitrypsin: 22 verschillende isovormen
 Dit is zeer moeilijk te voorspellen vanuit de genomische sequence
 EW-interactie netwerken

2

, o EW’n clusteren samen en werken samen in complexen van 1, 2 of 100den
EW’n
 Interageren dus met elkaar
 Moeilijk te voorspellen obv de basen in het genoom
o = hogere orde van complexiteit zonder drastische toename van het aantal
componenten (niet ineens meer EW’n
 Ongeveer 78% van de gist-EW’n is betrokken bij een complex
o De meeste cellulaire processen worden gereguleerd door EW-complexen in
plaats van individuele EW’n
o Functionele proteomics: deze beschouwd een EW als een element in een
interactie netwerk (contextuele functie), eerder dan het EW toe te schrijven
aan 1 bepaalde functie
 Het hangt af van in welke omgeving het EW verblijft, welke functie het
uitoefent
o Figuur: protein interactie map
 Cellulaire lokalisatie
o Afhankelijk van de biologische toestand van een cel, een EW kan gelokaliseerd
zijn in 1 of verschillende cellulaire locaties (nucleus, cytosol, PM,
mitochondria, ER,…)
 Vb. STAT-EW
 Verblijft meestal aan cellulair membraan, aan het intracellulair
deel van een receptor
 Als receptor geactiveerd wordt  STAT krijgt post-
translationele modificaties en transporteert dan naar nucleus
en verblijft daar dan als TF
 STAT = signal transducer en transcriptie factor
o Dus verblijft op 2 verschillende plaatsen in de cel 
hierdoor heeft het 2 verschillende functies
o Een bepaald EW kan verschillende bindingspartners hebben in verschillende
locaties
 Op deze manier kan dat ene bepaalde EW verschillende functies
hebben, afhankelijk van zijn lokalisatie in de cel
 Al bovengenoemde eigenschappen kan je niet voorspellen door genoom sequencing
 dus proteomics is noodzakelijk hiervoor

1.3. Proteomics als deel van een biologisch systeem
 Wilt zeggen: proteomics is geen discipline op zichzelf maar valt samen met andere
disciplines zoals genomics, transcriptomics, metabolomics,…
o Bio-informatica probeert al die data te integreren en te achterhalen welke
veranderingen er optreden op al die levels
o DAN praten van systems biology (globaal beeld krijgen van wat er gebeurt in
cel als deze bv. behandeld wordt met een carcinogeen)



3

,  Om deze dynamische complexiteit van een organisme te begrijpen, moet een
geïntegreerd beeld van alle aspecten van EW’n ontwikkeld worden  sindsdien
wordt enkel het gemiddelde van alle mogelijke toestanden gemeten
o mRNA- en EW-profielen en hoe deze in de loop van de tijd veranderen moet
geweten zijn  vb. gedurende ontwikkeling of veranderende
omstandigheden (bv. pathologie)
 Cel verandert over de tijd  Als je iets bestudeerd in een cultuur is
het resultaat dat je ziet altijd een gemiddelde van alle cellen in je
cultuur (het kan dus zijn dat sommige cellen compleet anders zijn dan
de andere cellen, maar het dus niet gezien wordt omdat de andere
cellen het maskeren)  we kijken dus altijd naar gemiddelden
o kennis van de toestand en eigenschappen van alle EW’n (ook hier kijken we
altijd naar het gemiddelde):
 posttranslationele modificaties  vb. fractie van de EW’n is
gefosforyleerd, maar de meerderheid niet en fosforylatie is afwisseld:
gaat aan en uit,…
 cellulaire lokalisatie  zelfde EW kan op verschillende plaatsen in cel
zijn
 binding van metabolomische liganden: heem-ring, metaalionen,
gucose, ATP, ADP, GTP, GDP,…
 alternatieve splicing  slechts een fractie van alle EW’n hebben dat
 proteolytische afbraak  vandaar dat synthese, lokalisatie en
activiteitsstatus van een protease regulerende factoren zijn
 oligomere toestand en bijdrage in complexen
 structuur, conformatie en allosterische mechanismen van EW’n
 we zien altijd gemiddelde van al deze dingen
o Alle EW-EW interacties in ruimte en tijd in 1 cel, moet je kennen
 Samen met de genomische en metabolomische data (in ruimte en tijd)  wordt dit
‘systems biology’ (systeembiologie) genoemd
o Dit is wat we willen bereiken = toekomst
o Als we het ooit bereiken: als je dan weet hoe cel zich gedraagt bij bepaalde
nood aan een stof, kan je maatregelen nemen en dus gezonder gaan leven

1.4. De verschillende gezichten van proteomics (kunnen er op
verschillende manieren naar kijken)
 Proteomics sensu strictu
o Grootschalige identificatie en karakterisering van EW’n, inclusief hun
posttranslationele modificaties  = shotgun proteomics
o Opm. we zien slechts een fractie, maar proberen zoveel mogelijk te
identificeren




4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur driesluyten. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €20,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

59063 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€20,49
  • (0)
Ajouter au panier
Ajouté