Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
CLASS NOTES €5,19   Ajouter au panier

Notes de cours

CLASS NOTES

 3 vues  0 fois vendu

EVERYTHING YOU NEED TO PASS THE EXAM WITH FLYING COLOURS

Aperçu 2 sur 10  pages

  • 7 janvier 2023
  • 10
  • 2022/2023
  • Notes de cours
  • Renoia
  • Toutes les classes
Tous les documents sur ce sujet (9)
avatar-seller
maragarca
UNIT 6: INTERACTION AND SOCIAL PREFERENCES
1. INTRODUCTION

Social interactions could include altruism, trust, reciprocity, and anything that links you with another person
under social preferences.
We will now cover situations involving interactions rather than purely individual decisions.
We will start by looking at the foundations of game theory to build the appropriate foundations as it is a unified
and standardized way to model interactions between people. At the end, when two people or more interact, you
can frame it as a game, Game theory presents a unified and highly coherent view of behaviour in strategic
interactions between people.
Then we will look at some applications including social interaction.

2. INTRODUCTION TO GAME THEORY

2.1 ELEMENTS OF A NORMAL FORM GAME
Games are about situations in which decision makers interact; we will mostly focus on two-player games. We will
look at some models that predict equilibrium outcomes (best decision) in strategic interactions between players.
A normal or strategic form game is described by three elements:
1) The players of the game. The players of the games are the decision makers; they could be individuals, firms,
or even governments.

2) A set of actions or strategies for each player. Actions or strategies constitute the choice set of a player; a
player could have finitely many actions, or infinitely many.

3) Payoff functions (preferences) for each action profile. Meaning that if I play this and the other person play
the other strategy what should I get? Payoff functions assign a given payoff to each player for each
combination of strategies of the different players.
2.2 BEST RESPONSE FUNCTIONS
Checking each strategy set for potential equilibrium qualities is tedious, especially when games get larger. So, in
this way, we would look to the best response functions which are an easier way of finding equilibria. They are
also much better for larger games.
The idea is very simple: find the best strategy for player i, conditional on the strategies of the other players.
2.3 REPRESENTATION OF A NORMAL GAME
The crucial point about a static game is that players move at the same time (or moves are revealed at the same
time)
Normal form games have a convenient graphical representation for 2 players, where the whole game is described
in a matrix:

, THE PRISONER’S DILEMMA

The prisoner's dilemma is a standard example of a game analysed in game theory that shows why two
completely rational individuals might not cooperate, even if it appears that it is in their best interests to do so.
This game describes the situation in which you have two suspects for a crime that are held in separate cells and
can confess or keep quiet. The different outcomes:
1) If nobody confesses, both walk after short detention (2 years).
2) If one confesses and the other does not, the confessing party walks or gets a very short sentence (1 year), while
the other party faces a long sentence (8 years).
3) If both confess, both get long jail sentences (5 years).




The prisoner’s dilemma is an important game inasmuch as it models many important processes (public goods,
arms race). The outcome of both parties is different depending on if they contribute or they do not contribute.
We are interested in equilibria of the game




What is the optimal strategy for each suspect?
Optimal strategies for suspect 1:

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur maragarca. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €5,19. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

60904 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€5,19
  • (0)
  Ajouter