In dit document vindt u een goede samenvatting van het vak signalen en systemen I. Dit wordt gegeven door Jan Beyens in de tweede bachelor van industrieel ingenieur. In de samenvatting staat alles wat je moet weten om te slagen. Op het einde staan er ook nog wat voorbeeldexamens uitgewerkt. Veel su...
Een systeem is een entiteit die een of meerdere signalen manipuleert om hieruit een of meerdere nieuwe signalen te creëren.
Deterministisch / stochastisch
Als de in- en uitgang van een systeem deterministische signalen zijn, wordt het systeem deterministisch genoemd
Als de in- en uitgang van een systeem random signalen zijn, wordt het systeem stochastisch genoemd.
Geheugenloos / causaal
Een systeem is geheugenloos als de uitgang op een bepaald tijdstip enkel afhankelijk is van de ingang op datzelfde tijdstip, en dit
voor alle tijden.
y(t0) hangt enkel af van x(t0), ∀t0 ∊]-∞, +∞[
Een systeem is causaal als de uitgang op een bepaald tijdstip afhangt van de ingang op datzelfde en/of vorige tijdstippen.
Een systeem is niet causaal als de uitgang op een bepaald tijdstip ook afhangt van toekomstige ingangen.
In deze cursus dus altijd causaal, aangezien we de tijd gebruiken als onafhankelijke veranderlijke.
Additief / homogeen
Een systeem wordt additief genoemd als T{x1+x2} = y1 + y2 , ∀ x1, x2
Een systeem wordt homogeen genoemd als T{ax} = ay , ∀ x, a
Een systeem wordt lineair genoemd als het zowel additief als homogeen is. Dus: T{ax1+bx2} = ay1 + by2
= **superpositie **eigenschap
Tijdsvariant / tijdsinvariant
Een systeem is tijdsinvariant als een tijdsverschuiving van het ingangssignaal eenzelfde tijdsverschuiving van het uitgangssignaal
geeft. Het antwoord van het systeem op een willekeurige ingang is onafhankelijk van het moment waarop deze wordt aangelegd. Als
T{x(t)} = y(t) dan T{x(t-t0)} = y(t-t0) , ∀t
= stationair
Systemen die niet tijdsinvariant zijn, worden logischerwijze tijdsvariant genoemd
= niet-stationair
Stabiliteit
BIBO-stabiliteit (Bounded Input – Bounded Output)
Als men een eindige ingang aanlegt aan het systeem, moet de uitgang ook eindig blijven. De uitgang van het systeem zal niet
divergeren als de ingang ook niet divergeert.
Een systeem is stabiel als: $$ \int_{-\infty}^{+\infty}\abs{h(t)}dt < \infty $$ met h(t) het impulsantwoord
Feedback
Oh yeey nu kunnen we feedback geven op de cursus
sike 😂
Bij een feedbacksysteem wordt de output van het signaal teruggekoppeld naar de input. That's it. (voor nu denk ik)
H2 - LTI Systemen in continue tijd
Lineaire TijdsInvariante Systemen in Continue Tijd
Impulsantwoord
Als een LTI systeem geëxciteerd wordt door een ingang x(t) = $\delta$(t), dan heet de uitgang ervan het impulsantwoord ( =
impulsrespons)
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur jonasvermeulen1. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €6,49. Vous n'êtes lié à rien après votre achat.