Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Complete samenvatting Statistiek (Statistics) €4,49   Ajouter au panier

Resume

Complete samenvatting Statistiek (Statistics)

2 revues
 40 vues  2 fois vendu
  • Cours
  • Établissement

Een complete samenvatting van de wekelijkse les stof van het vak statistics voor econometrie studenten. Het vak wordt in het eerste jaar gegeven en deze samenvatting geeft grondig weer wat er per week goed begrepen moet worden, voorbeelden zijn inbegrepen.

Aperçu 3 sur 16  pages

  • 9 mars 2023
  • 16
  • 2021/2022
  • Resume

2  revues

review-writer-avatar

Par: florianvandenberg • 1 année de cela

review-writer-avatar

Par: mayamaklev • 1 année de cela

avatar-seller
Week 1: probability recap
A random variable is a function from a sample space S to the real numbers R

P(x ∈ A) = Px (A) = P({s ∈ S|X(s) ∈ A})

The cdf: FX (x) = P(X ≤ x), ∀x ∈ R
pdf/pmf: f (x) = P(X = x) if x is discrete, f (x) = F ′ (x) if X is continuous.

Any function of X, Y = g(X) is a random variable. To find the distribution of
Y we have to invert function g and calculate the cdf of Y .

P
g(x)fX (x), Discrete
E(g(X)) = ´ x∈X
f
x∈X X
(x)dx, Continuous

Var(X) = E(X 2 ) − E(X)2
Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X, Y )
E(aX + bY ) = aE(X) + bE(Y )
Simultaneous and conditional distribution:
Discrete:
pX,Y (k, j) = P(X = k; Y = j)
=j)
pX|Y (k|j) = P(X = k|Y = j) = P(X=k;Y
P(Y =j)
Continuous:
fX,Y (x, y)
f (x,y)
fX|Y (x|y) = X,YfY (y)



E(X) = E[E(X|Y )]
Var(X) = Var(E[X|Y ]) + E[Var(X|Y )]

Law of Large Numbers (LLN)
suppose {Xn }∞
n=1 a sequence iid random variables, then there will be almost sure
convergence to X̃ iff
 
P lim |Xn − X̃| < ϵ = 1, ∀ϵ > 0
n→∞
n
1X
lim Xi = lim X̄n → E[X1 ] almost surely
n→∞ n n→∞
i=1
 
lim P |Xn − X̃| < ϵ = 1, ∀ϵ > 0 Convergence in probability
n→∞

Central limit theorem (CLT) √
n(X̄−µ)
For finite expectation and variance we have. σ
→ N (0, 1)




1

,Week 2: Statistical models
fX (x1 , · · · , xn ) = nk=1 fXk (xk )
Q
A histogram gives the first insights on whether we have possibly chosen the
correct probability distribution for our dataset.
Let {aj }m j=1 be a partition over range xi . It holds that aj − aj−1 = c
Choose y ∈ (aj−1 , aj ]. then
hn (y) = #{1 ≤ i ≤ n|aj−1 < xi ≤ aj } = ni=1 1{xi ∈(aj−1 ,aj ]}
P
A scaled histogram is then:
hn˜(y) =
#{1≤i≤n|aj−1 <xi ≤aj }
cn


Transformations
How do we get the distribution of Y = h(X) from X?
FY (y) = P(Y ≤ y) = P(h(X) ≤ y) = P(X ≤ h−1 (y)) = FX (h−1 (y)

fY (y) = ∂y FY (y)
fY (y) = fX (h−1 (y)) · ∂ −1
∂y
h (y)

Location-scale family Let µ ∈ R, σ > 0,
 
x−µ
Hµ,σ (x) = H
σ
Y , a random variable with cdf H, define Zµ,σ = µ + σY , Then Zµ,σ has cdf Hµ,σ
P(Zµ,σ ≤ y) = P(µ + σY ≤ y)
   
y−µ y−µ
=P Y ≤ =H
σ σ


Week 3: Maximum Likelihood
Definition An estimate for θ0 is any function of the data W (⃗x). The corresponding
estimator is a stochastic variable obtained by filling in the random vector.

Method of moments
n
1X
lim Xi = E(X1 ) → X̄ ≈ E(X1 )
n→∞ n
i=1
n
1X 2
lim Xi = E(X12 ) → X̄ 2 ≈ E(X12 )
n→∞ n
i=1
..
.
n
1X k
lim Xi = E(X1k ) → X¯k ≈ E(X1k )
n→∞ n
i=1

Sample mean: X̄ = n1 ni=1 P
P
Xi
Sample variance: S = n−1 ni=1 (Xi − X̄)2
2 1



2

, Definitions on maximum likelihood
Likelihood function: θ → L(θ|⃗x) = fθ (⃗x)
Maximum likelihood estimate: W (⃗x) = argmaxθ∈Θ L(θ|⃗x), The parameter value in
the parameter space at which the likelihood functino attains its maximum.

L(θ|⃗x) = fθ (⃗x) = Πni=1 gθ (xi )
Log likelihood: θ → log(L(θ|⃗x))
Suppose that the log likelihood is differentiable on Θ ⊆ Rk . Then the maximum
can be attained at two different kinds of points:
i) boundary points
ii) stationary points: is a point θ̃ that satisfies ∂θ∂ j log(L(θ|⃗x))|θ=θ̃ = 0, ∀j ∈ {1, · · · , k}


Week 4: Evaluating estimators
 
Definition Biasθ (W ) = Eθ W (X) ⃗ − τ (θ) . We say that an estimator is unbiased
⃗ = τ (θ).
if Eθ (W (X))
⃗ − τ (θ)||
M AE(θ, W ) = Eθ ||W (X)
⃗ − τ (θ)||2 = Varθ (W (X))
M SE(θ, W ) = Eθ ||W (X) ⃗ + Bias2 (W )
θ
Where the variance is called the precision and the bias squared is called the accuracy.

Definition An estimator W ∗ is a UMVU estimator if it is unbiased and, for any
other estimator W that is unbiased, we have Varθ (W ∗ ) ≤ Varθ (W ).

Cauchy-Schwarz Lemma E(Y Z)2 ≤ E(Y 2 )E(Z 2 )


 2

Iθ = Eθ log(fθ (X)) Fisher information
∂θ
 2  
∂ ∂
iθ = Eθ log(gθ (X1 )) = Var log(fθ (X)) for an individual observation
∂θ ∂θ
Cramer-Rao:
′ 2
⃗ ≥ τ (θ)
Varθ (W (X))

′ 2
⃗ ≥ τ (θ)
Varθ (W (X))
niθ

Week 5: Exponential families
Definition A set of univariate distributions {gθ |θ ∈ Θ} is called an exponential
family if we can rewrite it as:
Pm
wj (θ)tj (x)
gθ (x) = h(x)c(θ)e j=1




3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur victorvanderwel. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78140 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€4,49  2x  vendu
  • (2)
  Ajouter