Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Introduction to Statistics - UvA - summary €4,49
Ajouter au panier

Resume

Introduction to Statistics - UvA - summary

1 vérifier
 44 vues  4 fois vendu
  • Cours
  • Établissement

A summary of all the important concepts and facts of the course Introduction to Statistics, at UvA, given by Thijs Bol.

Aperçu 2 sur 7  pages

  • 13 mars 2023
  • 7
  • 2022/2023
  • Resume

1  vérifier

review-writer-avatar

Par: kxbelhaj • 11 mois de cela

avatar-seller
Key concepts: introduction to statistics
 Nominal variables:
o Have no rank order and are closed (categorical) questions.
 Ordinal variables:
o Have a rank order and unequal distances between closed questions.
 Interval variables:
o Have a rank order with equal distances.
 Ratio variables:
o Have a rank order with equal distances, and a natural 0.
 Dichotomous variables:
o Have only two categories.
o The mean equals the proportion.
 Centrality measures:
o The mode; the mean; the median.
 Range:
o The range is the difference between the largest and the smallest
observations.
 The standard deviation:
o An indication of dispersion of the sample distribution.



2
o σ = ∑ ( y i− y )
n
 Z-score:
o Number of standard deviations from the mean to the observation.
o The z-score is important because it takes the relativity into account,
differences in both centrality and dispersion.
y −y
o z= ⅈ
σ
o We can use z-scores to find probabilities using table A, the z-score
corresponds to the probability in the tail.
o We can also find the value of yi: y i=( z × s ) + y
o A z-distribution is independent of the original distribution and does not
have to be normal.
 Normal distribution:
o The normal distribution is symmetric, bell-shaped, and is characterised
by the mean μ and the standard deviation σ .
 The empirical rule :
o We can summarise all observations in normal/bell-shaped distributions:
 68% between y−s∧ y + s.
 95.4% between y−2 s∧ y+ 2 s.
 99.7% between y−3 s∧ y +3 s .
 The probability p:
o The probability is the total area under the curve (100%, p=1).
o Any area under the curve can be expressed as probability p.
 Standard normal distribution:

, o A theoretical distribution that is perfectly symmetrical and bell-shaped
with specific properties: μ=0∧σ=1.
 Point estimation:
o The “best guess” of the sample statistic.
o Can vary across different samples.
 Interval estimation:
o An interval of which we are quite certain that it will contain the actual
population value.
 Margin of error:
o To construct a confidence interval, we subtract and add from the point
estimate a z-/t-score multiplied with the standard error.
 Sample distribution:
o The known distribution of one variable in the centre.
 Sampling distribution:
o A theoretical distribution of a sample statistic, that is normally
distributed and provides us with a standard error, that we in turn can
use to calculate a confidence interval.
o We cannot “get”/calculate a sampling distribution.
o Irrespective of the distribution of the variable in the population, the
sampling distribution of a statistic will be normal.
 Sample statistic:
o Things we can calculate from a sample ( μ/ π ).
 Central limit theorem:
o When the sample is large enough (n ≥ 30), the sampling distribution of µ
and π will follow a normal distribution.
o You can only calculate the standard error when the central limit
theorem holds.
 Standard error:
o The dispersion of the sampling distribution tells us how much our point
estimate would vary between different samples, this gives us the
standard error.
o The standard deviation of the sampling distribution.

o Standard error for a proportion: se=
σ
√ π (1−π )
n
o Standard error for a mean: se=
√n
 Confidence intervals:
o The confidence interval is the interval of which we are quite certain that
it contains the population mean.
o CI = ^μ∨ π^ ±( z∨t × se )
 Confidence level:
o 90%  z = 1.65
o 95%  z = 1.96
o 99%  z = 2.58
o The confidence level should be decided upfront.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur sophiebruinzeel. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

51292 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€4,49  4x  vendu
  • (1)
Ajouter au panier
Ajouté