Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary for 'Algorithmic persuasion' and its readings - exam grade: 8.8 €7,89   Ajouter au panier

Resume

Summary for 'Algorithmic persuasion' and its readings - exam grade: 8.8

6 revues
 409 vues  57 fois vendu
  • Cours
  • Établissement

This contains the summary of the gazilion readings for UvA course 'Algorithmic persuasion' and notes. Readings a.o. include those of Boerman, Zarouali, Matz, Segijn, etc. Everything is organized according to weeks (W1-8), with headers and subheaders. Exam grade: 8.8

Aperçu 4 sur 33  pages

  • 13 mars 2023
  • 33
  • 2021/2022
  • Resume

6  revues

review-writer-avatar

Par: annastampanoni • 5 mois de cela

review-writer-avatar

Par: rahmafauziah • 6 mois de cela

review-writer-avatar

Par: jesperappels • 1 année de cela

Traduit par Google

I made it through the summary a few times

review-writer-avatar

Par: elenapapini07 • 1 année de cela

review-writer-avatar

Par: larsoosterbeek • 1 année de cela

review-writer-avatar

Par: bachhoathoigian • 1 année de cela

avatar-seller
Week 1
Algorithms are encoded procedures for Algorithm
transforming unput data into a desired output, Set of rules to obtain
Input Output
based on specific calculations. the edpected output
from given input

Algorithmic power
(functions)
Four functions
- Prioritization  making an ordered list
o Emphasize or bring attention to certain things at the expense of others (e.g. google page
rank)
- Classification  picking a category
o Categorize a particular entity to given class by looking at any number of the entity's
features (e.g. inappropriate YT content)
- Association  finding links
o Association decisions mark relationships between entities (e.g. Okcupid dating match)
- Filtering  isolating what's important
o Including/excluding info according to various rules/criteria. Inputs to filtering algorithms
often take prioritizing, classification, or association decisions into account (FB TL)

Two broad categories
Rule-based algorithms
- Based on a set of rules/steps
- Typically IF  THEN
- Pro: easy to follow
- Con: only applicable to specified conditions

Machine learning algorithms
- Algorithms that 'learn' by themselves (based on statistical models rather than deterministic rules)
- The algorithms are 'trained' based on a corpus of data from which they may 'learn' to make
certain kinds of decisions without human oversight
- Pro: flexible and amenable to adaptions
- Con: needs to be trained & black-box (at some point you won't understand the output of the
algorithm cause it trained itself)
- Most social media use machine learning algorithms  big corpus of data

Recommender systems
- Recommender systems are algorithms that provide suggestions for content that is most likely of
interest to a particular user
o These algorithms that decide which content to display to who based on certain criteria
o Users hence receive distinct streams of online content
 E.g. FB, Netflix, Spotify, YT, etc.
- Rationale: avoid choice overload, to maximize user relevance, and to increase work efficiency.

,Techniques (types of rec systems)
1. Content-based filtering: these algorithms learn to recommend items that are similar to the ones
that the user liked in the past (based on similarity of items)
2. Collaborative filtering: these algorithms suggest recommendations to the user based on items
that other users with similar tastes liked in the past
3. Hybrid filtering: combine features from both content-based and collaborative systems, and
usually with other additional elements (e.g. demographics)  most common type.

Perceptions of algorithms  appreciation (e.g. blind faith) vs aversion. May depend
on may factors

- Type of task
o E.g. mechanical, objective tasks (efficiency of showing relevant google content) vs
subjective (dating matches) See also lvl of subjectivity.
- Level of subjectivity in decisions
- Individual characteristics
- Etc. (more research needed)

Algorithmic persuasion
Algorithmic persuasion: 'any deliberate attempt by a persuader to influence the beliefs, attitudes and
behaviours of people through online communication that is mediated by algorithms'

Feedback loop of algorithmic persuasion

,Input
- First party data: data you yourself
- Second party data: Google, using data from a collaborative trusted party
- Third party data: external party, data brokerage, specialised in data.



- Explicit data: data we explicitly leave behind (writing our FB profile), we're aware we leave that
behind
- Implicit data: subconsciously: cookies, IP address, search history.

Algorithm
- Techniques (rule-based vs machine learning, different power structures  class, prior, etc.)
- Objective of persuader: changing attitudes, opinions, feelings, behaviours, etc.
- Algorithmic bias
o Developers' bias: they have prejudice.
o Machine learning algorithms are trained on data sets, which can be flawed.

Persuasion attempt
- Context: commercial and non-commercial  corporate comm, health comm, marketing, etc.
- Nature:
o Paid: e.g. sponsored. You paying for getting your ads shown by the algorithm
o Organic: if FB is using its own algorithm to filter your TL, that's organic (non-paid)
- Medium: smartphones, laptop, smart TV, public transport, etc.
- Modality: visual, audio, (audio)visual, conversational (Alexa)

Persuasion process
- Relevance: provide us most relevant content
- Reduction: compressing content is more persuasive  easier to process
- Social norm: show us what peers find relevant
- Automation: we have bias, we over rely on technology.  more vulnerable to alg pers.
- Reinforcement: they are reinforcing previous attitudes  showing us content that fit within our
world view.
- Etc…

Persuasive effects
- Intended: desired, expected
- Unintended: undesired
o Manipulation
o Privacy issues
o Exploitation
o Vulnerable

, Week 2| Online advertising
Paper 1 Boerman: OBA literature overview
OBA: ''The practice of monitoring people's online behaviour and using the collected information to show
people individually targeted advertisements'' Boerman, 2017
OBA (online behavioural advertising) is a sub-group of personalized advertising.
Effects depend on advertiser- and consumer-controlled factors.




Advertiser-controlled
- Ad characteristics
o Level of personalization (extent)
 Type of info used (web-browsing, clicks, basket)
 Amount of info (only 1 type of data or combination)
o Accuracy !!!
- OBA transparency
o Privacy statements and informed consent
 Shows what type of data they use and collect
 have little effect because we don't read them (and hard to understand)
o Disclosure (increasing transparency through self-regulation)
 hardly effective cause we barely recognize the symbol/know what it is)

Consumer controlled factors
- Knowledge and abilities
o Consumers have little knowledge about OBA and hold misconceptions
o Even less knowledge about legal protections (GDPR: EU regulation that protects privacy)
o Consumers do not seem to understand tools to protect online privacy

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur thaomynguyen. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,89. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78998 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,89  57x  vendu
  • (6)
  Ajouter