Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Fundamenten van de wiskunde - uitwerkingen huiswerk week 3 €4,99   Ajouter au panier

Notes de cours

Fundamenten van de wiskunde - uitwerkingen huiswerk week 3

 9 vues  0 fois vendu
  • Cours
  • Établissement
  • Book

Ook als de inleveropgave veranderd is, is dit natuurlijk nog steeds een heel goede oefening om de stof te begrijpen! Ik heb zelf erg genoten van het vak Fundamenten van de Wiskunde.

Aperçu 3 sur 17  pages

  • 5 avril 2023
  • 17
  • 2021/2022
  • Notes de cours
  • ?
  • 3
avatar-seller
Fundamenten – Uitwerkingen
Huiswerk 3


29 september 2021

Opgave 3.2.1. Hoeveel elementen heeft de verzameling A = {a, b, {a, b}}?
Antwoord: Er geldt dat a ∈ A, b ∈ A en {a, b} ∈ A. Dit zijn alle
verschillende elementen die de verzameling A bevat. De verzameling A =
{a, b, {a, b}} heeft dus 3 elementen.
Extra informatie: De grootte van een verzameling wordt ook wel de kardinaliteit
van een verzameling genoemd, en kan worden genoteerd met verticale strepen
aan de linker- en rechterkant van de verzameling, net als bij de absolute
waarde. Voor Opgave 3.2.1 krijgen we dan voor de kardinaliteit van de
verzameling A dat |A| = 3. Een andere notatie die voorkomt is het gebruik
van een hekje, oftewel #A = 3.


Opgave 3.2.3. Hoe worden de volgende verzamelingen ook wel genoemd?
(1) A := {n ∈ Z | n = 2m met m ∈ Z}.
Antwoord: Bij een opgave met gehele getallen is het vaak verstandig om te
beginnen met kleine gevallen van n, met n ∈ Z.
Voor n = 0 hebben we 0 = 2 · 0 met 0 ∈ Z, dus

0 ∈ {n ∈ Z | n = 2m met m ∈ Z}.
1 1
Voor n = 1 hebben we 1 = 2 · 2
met 2

/ Z, dus

1∈
/ {n ∈ Z | n = 2m met m ∈ Z}.

1

,Voor n = −1 hebben we −1 = 2 · − 12 met − 12 ∈

/ Z, dus

−1 ∈
/ {n ∈ Z | n = 2m met m ∈ Z}.

Voor n = 2 hebben we 2 = 2 · 1 met 1 ∈ Z, dus

2 ∈ {n ∈ Z | n = 2m met m ∈ Z}.

Voor n = −2 hebben we −2 = 2 · (−1) met −1 ∈ Z, dus

−2 ∈ {n ∈ Z | n = 2m met m ∈ Z}.
3 3
Voor n = 3 hebben we 3 = 2 · 2
met 2

/ Z, dus

3∈
/ {n ∈ Z | n = 2m met m ∈ Z}.

We zien hierbij het volgende patroon:

{−2, 0, −2} ⊂ {n ∈ Z | n = 2m met m ∈ Z}.

De even getallen n zijn te schrijven als n = 2m met m ∈ Z en zitten dus in
de verzameling {n ∈ Z | n = 2m met m ∈ Z}.
De oneven getallen n zijn juist niet te schrijven als n = 2m met m ∈ Z, voor
deze getallen geldt namelijk n = 2m + 1 en zitten dus niet in de verzameling
{n ∈ Z | n = 2m met m ∈ Z}.
Conclusie: de verzameling {n ∈ Z | n = 2m met m ∈ Z} bestaat uit alle
even getallen.
Extra informatie: De verzameling bestaande uit alle even getallen wordt
ook wel genoteerd als 2Z.


(2) B := {k ∈ N | er bestaan p, q ∈ N zodat k = pq, en dat 1 < p <
k en 1 < q < k}.
Antwoord: Bij deze opgave bekijken we een deelverzameling van N, dus is
het ook hier verstandig om eerst kleine gevallen van k met k ∈ N te proberen.
Voor k = 1 hebben we 1 = 1 · 1, dus p = 1 en q = 1. Hieruit volgt:

1∈
/ B,

2

, want p = 1 ̸< 1 = k en q = 1 ̸< 1 = k.
Voor k = 2 hebben we 2 = 2 · 1, dus p = 1 en q = 1. Hieruit volgt:

2∈
/ B,

want p = 2 ̸< 2 = k en 1 ̸< 1 = q.
Voor k = 3 hebben we 3 = 3 · 1, dus p = 3 en q = 1. Hieruit volgt:

3∈
/ B,

want p = 3 ̸< 3 = k en 1 ̸< 1 = q.
Voor k = 4 hebben we 4 = 2 · 2, dus p = 2 en q = 2. Hieruit volgt:

4 ∈ B,

want 1 < p = 2 < k = 3 en 1 < q = 2 < k = 3.
We zien hierbij het volgende patroon:

{4, 6, 8, 9, 10} ⊂ B,

waarbij het getal k = 1 en de priemgetallen steeds worden overgeslagen. Laat
P de verzameling zijn van alle priemgetallen. Dan is de verzameling B te
schrijven als:
B = N − ({1} ∪ P ).
De verzameling B bestaat dus uit alle samengestelde getallen, oftewel alle
getallen die minstens twee keer deelbaar zijn door een (niet noodzakelijk
hetzelfde) priemgetal.


(3) C := {x ∈ R | er bestaan a, b ∈ Z zodat b ̸= 0 en x = ab }.
Antwoord: Met a ∈ Z en b ∈ Z − {0} kunnen we respectievelijk alle tellers
a en alle noemers b van een breuk maken. Hieruit volgt dat C = Q, oftewel
de verzameling van alle rationale getallen.




3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur marjavdwind. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67474 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€4,99
  • (0)
  Ajouter