Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
college aantekening Statistiek 1B €7,09   Ajouter au panier

Notes de cours

college aantekening Statistiek 1B

 3 vues  0 fois vendu
  • Cours
  • Établissement

Dit document bevat een samenvatting van alle college's over statistiek 1B. Ook bevat het handige afbeeldingen die het begrijpen van de stof veel gemakkelijker maakt. De stappen plannen in dit document geven een duidelijke uitleg over hoe je bepaalde statistische methodes kan gebruiken. Dit heeft mi...

[Montrer plus]

Aperçu 3 sur 26  pages

  • 7 avril 2023
  • 26
  • 2022/2023
  • Notes de cours
  • Van krimpen
  • Toutes les classes
avatar-seller
Statistiek 1B
College 1
Statistische inferentie→statistic om je parameter mee te voorspellen
Statistic: steekproef
- Steekproefgemiddelde: x̄
- Steekproefproportie:p^

Parameter: populatie
- Populatiegemiddelde: μ
- Populatieproportie: ρ
→door middel van kansrekening: sampling distribution (normaal verdeeld)
2 methodes voor statistische inferentie:
1. Betrouwbaarheidsinterval→schat waarde van de parameter
2. Significantietoets→bewijs tegen bepaalde claim
Frequentieaanpak (voornamelijk)→verzekert ons dat we correcte conclusies trekken
Bayesiaanse aanpak→geeft bewijs voor de hypothese
Voorwaarde voor sampling distribution:
- Moet op een nette manier verzameld zijn→simple random sample
- Problematisch zijn voluntary response samples
Centrale limietstelling: als n groot is, is steekproefgemiddelde x̄ normaal verdeeld
H6 aannames:

1. SRS uit populatie, geen nonresponse
2. Normaal verdeling N(μ, σ)
3. μ is onbekend, σ is wel bekend

Betrouwbaarheidsinterval: hoe goed kan ik μ schatten? → 68-95-99,7 regel!
95 % BHI: 95% kans dat je μ binnen het gevonden interval ligt.


2 soorten schattingen:

1. puntschatter→1 getal, beste gok voor de parameter
2. intervalschatter→interval dat hopelijk populatiegemiddelde bevat

2 opties:
1. het interval bevat μ niet
2. het interval bevat μ wel
Algemene vorm van C-BHI: schatter+- margin of error

,Margin of error wordt bepaald door:
1. Variabiliteit σ x̄: σ/ √ n
2. Betrouwbaarheid methode: C, onder aanname van normaal verdeling


BHI:
- Kans C, tussen 2 sd onder en boven
gemiddelde.
- x̄= normaal verdeeld
- Gemiddelde: μ
- Sd: σ/ √ n




→deze wil je zo klein
mogelijk!
Margin of error rond je af naar boven, 216,09 wordt 217!
→hoe smaller BHI, hoe nauwkeuriger de schatting van de parameter
→factoren bepalend voor breedte van BHI zijn: Z-waarde, hoe kleiner C, hoe kleiner
Z, hoe smaller BHI
→hoe groter n, hoe kleiner σ/ √ n, hoe smaller BHI




College 2
Betrouwbaarheidsinterval& significantietoets→gebasseerd op sampling distribution
statistics

Significantietoets→je kijkt naar staartkans. Hoe goed past de data, bij de hypothese.

Wat als deze kans heel klein?
1. We hebben iets uitzonderlijks waargenomen
2. Hypothese is onjuist→ voorkeur
Gevolg= je neemt afstand van de hypothese
Stappen significantietoets:
1. Assumpties
2. Formuleer H0 en Alternatieve hypothese (Ha)→bewijs tegen H0
3. Bereken test-statistic→hoe ver ligt de data van H0

, 4. P- waarde→een minstens zo’n extreem resultaat
5. Conclusie


Assumpties:
Significantietoets→sterkte van bewijs tegen H0
Elke significantietoets doet aannames over;
- Cc
Opstellen Hypothese:
- H0: specifiek standpunt over populatieparameter
- Ha: vager, sluit H0 uit!
Test statistic:
- Jj
- Ha bepaalt richting van bewijs tegen H0
Formuleeee
P-waarde→geloofwaardigheid H0.
Hoe kleiner de P waarde, hoe sterker het bewijs tegen H0.
- hoe onwaarschijnlijk H0 is
- <0,05= klein


H0: het ware populatiegemiddelde=U0


Tweezijdig: U=U0 U is niet U0
Conclusie: p<a →je verwerpt H0= significant effect!
Je kan nooit zeggen je accepteert H0, je verwerpt hem wel of niet


College 3
Hoe breder het interval hoe meer kans dat het populatiegemiddelde hier in ligt.
Significantie toets→kunnen we bewijs leveren tegen de nulhypothese ten gunste van
een alternatieve hypothese.

5 stappen, waarbij we het gemiddelde niet kennen en sd wel.
1. Aannames→je hebt een SRS nodig, kwantitatieve data, normaal verdeeld
2. Hypothese optstellen:
H0: populatiegemid=hypothetische waarde
Ha: populatiegemid is ongelijk aan de hypothetische waarde = tweezijdig toetsen

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur leannesmit24. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,09. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67096 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!

Récemment vu par vous


€7,09
  • (0)
  Ajouter