Statistiek SEM 2
Van lot naar kans
Inhoudsopgave
8 MAYBE YES, MAYBE NO........................................................................................................................................................ 3
8.1 DE TAAL VAN DE KANS = BASISBEGRIPPEN KANSBEREKENING.................................................................................................................3
8.2 DE KANSDEFINITIE........................................................................................................................................................................ 4
8.3 AXIOMATISCHE KANSREGELS........................................................................................................................................................... 5
9 VALT TE BEZIEN OF WORDT VERWACHT................................................................................................................................ 6
9.1 FREQUENTIEVERDELING VS. KANSVERDELING......................................................................................................................................6
9.1.1 Kansverdeling......................................................................................................................................................................6
9.1.2 Verwachtingswaarde en variantie van een stochast..........................................................................................................7
9.1.3 Lineair getransformeerde stochasten.................................................................................................................................7
9.1.4 Verwachting en variantie van een som van stochasten.....................................................................................................7
9.1.4.1 Een simultane kansverdeling..........................................................................................................................................................7
9.1.4.2 Overzicht belangrijke regels:.......................................................................................................................................................... 8
9.1.4.3 De conditionele/voorwaardelijke verdeling...................................................................................................................................8
10 WELKE DISCRETE KANSMODELLEN PASSEN.......................................................................................................................... 9
10.1 INLEIDING: DE VERJAARDAGENPARADOX..........................................................................................................................................9
10.2 DE BINOMINALE VERDELING..........................................................................................................................................................9
10.2.1 Inleiding + kennis uit vorige lessen....................................................................................................................................9
10.2.2 De kenmerken van een binominale verdeling...................................................................................................................9
10.2.3 Tabel binomiale verdeling...............................................................................................................................................10
10.2.4 Toepassingen het lottospel.............................................................................................................................................12
10.2.5 Verwachtingswaarde en variantie van een binomiaal verdeelde stochast....................................................................14
10.2.6 Giscorrectie.....................................................................................................................................................................14
10.3 DE HYPERGEOMETRISCHE VERDELING............................................................................................................................................14
10.3.1 Verwachtingswaarde en variantie van de hypergeometrische verdeling......................................................................14
11 DE NORMALE KANSDICHTHEIDSFUNCTIE: EEN PASSE – PARTOUT......................................................................................15
11.1 INLEIDING............................................................................................................................................................................... 15
11.2 EIGENSCHAPPEN VAN DE NORMALE VERDELING EN NORMALE DICHTHEIDSFUNCTIE................................................................................15
11.3 DE STANDAARDNORMALE VERDELING...........................................................................................................................................16
11.4 KANSDICHTHEDEN OPZOEKEN......................................................................................................................................................16
11.4.1 Hoe een specifieke kans berekenen voor een normaal verdeelde variabelen?..............................................................17
11.5 DE NORMALE VERDELING (DEEL 2)..............................................................................................................................................18
11.5.1 Chebychev voor de normale verdeling............................................................................................................................18
11.5.2 Normaliteitstoetsing.......................................................................................................................................................18
11.5.3 De continuïteitscorrectie.................................................................................................................................................21
12 WAAR DISCRETE EN CONTINUE MODELLEN OVERLAPPEN?................................................................................................ 22
12.1 DE OPLOSSING VAN HET RODE DRAAD – PROBLEEM........................................................................................................................22
12.2 DE CENTRALE LIMIETSTELLING CLS...............................................................................................................................................22
13 HET SCHATTEN VAN STEEKPROEFPROPORTIES................................................................................................................... 24
13.1 RODEDRAADPROBLEEM 2.0........................................................................................................................................................24
13.2 DE STEEKPROEFVERDELING VAN EEN PROPORTIE.............................................................................................................................25
13.3 PUNTSCHATTING VAN DE POPULATIEPROPORTIE (P).........................................................................................................................25
13.3.1 Zuivere puntschatting.....................................................................................................................................................26
13.3.2 Efficiënte puntschatting..................................................................................................................................................26
1
, 13.4 INTERVALSCHATTING VAN DE POPULATIEPROPORTIE (P)....................................................................................................................27
13.4.1 De 95% betrouwbaarheid...............................................................................................................................................27
13.4.2 Andere betrouwbaarheidsintervallen.............................................................................................................................28
13.4.3 Steekproefgrootte bepalen in functie van foutenmarge?...............................................................................................28
13.5 DE EINDIGHEIDSCORRECTIE.........................................................................................................................................................29
13.6 INTERVALSCHATTING VAN EEN POPULATIEGEMIDDELDE....................................................................................................................29
13.6.1 Het stappenplan voor de oefeningen..............................................................................................................................32
14 HYPOTHESETOETSING....................................................................................................................................................... 34
14.1 PROPORTIES............................................................................................................................................................................ 34
14.2 GEMIDDELDEN......................................................................................................................................................................... 37
14.2.1 Toetsen van gemiddelden met onbekende standaardafwijking.....................................................................................37
14.2.2 Type I- fout en type II- fout..............................................................................................................................................38
2
,8 Maybe Yes, maybe No
Belang van kansberekening als sociale wetenschapper = uitspraken doen over een populatie op basis van een
steekproef
We doen nu in 2de semester aan inferentiële statistiek = op basis van steekproefgegevens uitspraken doen over de
populatie (vs. 1ste semester beschrijvende statistiek)
8.1 De taal van de kans = basisbegrippen kansberekening
- Een stochastisch proces = ‘kansexperiment’ = is een proces waarvan de uitkomst onzeker is
o Vs. een deterministisch proces is een proces waarvan de uitkomst vastligt
o Vb. kop of munt, met de dobbelsteen gooien, zal deze persoon de komende 4 jaar betrokken zijn bij een auto
ongeluk
- Een toevalsgebeuren (gebeurtenis) = een specifieke groepn van uitkomst(en) van een stochastisch proces
- Een elementair toevalsgebeuren behelst 1 uitkomst
o Vb. bv. Toevalsgebeuren A (‘het gooien van een 1 met een eerlijke dobbelsteen’) = {1}
- Uitkomstenruimte S = de verzameling van alle mogelijke elementaire toevalsgebeuren
o Vb. S={1, 2, 3, 4, 5, 6} of S={k, m} = bij het gooien van een dobbelsteen
- Een samengesteld toevalsgebeuren heeft betrekking op meerdere elementaire toevallasgebeurens
o Vb. bv. Gebeurtenis B (‘het gooien van een even getal met een eerlijke dobbelsteen’) = {2, 4, 6}
Intermezzo; symbolen uit de verzamelingenleer
= Een verzameling is een geheel van objecten, die aan bepaalde voorwaarden moeten voldoen om tot de
verzameling te behoren => Notatie: A = {s, t, a, i, e, k} (= is bijvoorbeeld de verzameling van de letters die voortkomen in het
woord statistiek)
- De unie van twee verzamelingen A en B bestaat uit alle elementen die in A of B zitten
o A∪B
o Voorbeeld: A = {1, 2} en B = {oneven}. A ∪ B = ?
- De doorsnede van twee verzamelingen A en B bestaat uit alle elementen die in A en B zitten
o A∩B
o Voorbeeld: A = {1, 2} en B = {oneven}; A ∩ B = ?
- A is een deelverzameling van B wanneer ze een deel van de elementen van B bevat
o A⊂B
o Voorbeeld: A = {1, 2} en B = {1, 2, 3, 4, 5, 6} S 13
- Disjuncte verzamelingen zijn verzamelingen die geen gemeenschappelijke elementen bevatten
o Voorbeeld: A = {1} en B = {2, 4, 6}
o A∩B=∅
3
, - Het verschil van twee verzamelingen A en B is de verzameling van alle elementen van A die niet in B zitten
o A\B
o Voorbeeld: A = {1, 2, 3, 4, 5, 6} en B = {2, 4, 6}; A \ B = ?
Basisbegrippen kansberekening;
- Elk toevalsgebeuren A (elementair of samengesteld) is een deelverzameling uit de uitkomstenruimte S
- De elementaire toevalsgebeurens in uitkomstenruimte S zijn disjunct: ze overlappen niet
- Uitkomstenruimte S is exhaustief: het bevat alle mogelijke elementaire toevalsgebeurens
- Het complement van toevalsgebeuren A omvat alle elementaire toevalsgebeurens in de uitkomstenruimte S
die niet gelijk zijn aan A
o Ac of (𝐴 ) ̅= S \ A
o Voorbeeld: A = {1}, dan( 𝐴) ̅ = {2, 3, 4, 5, 6}
De machtsverzameling M(S) = de verzameling van alle mogelijke deelverzamelingen van uitkomstenruimte S
- Voorbeeld: S = {1, 2, 3}
- Hoeveel deelverzamelingen zijn er mogelijk?
o Met 0 elementen: ∅
o Met 1 element: {1}, {2}, {3}
o Met 2 elementen:{1, 2}, {2, 3}, {1, 3}
o Met 3 elementen: {1, 2, 3}
- Vb. M(S)={Ø,{1},{2},{3},{1,2}, {2, 3}, {1,3}, {1,2,3}}
Als #S = n #M(S) = 2n
8.2 De kansdefinitie
Een kans P(G) is de waarschijnlijkheid dat de gebeurtenis G zal optreden, uitgedrukt in een getal tussen 0 en 1
- Waarvoor staat P? (probability)
o Voorbeeld: P({2 gooien met eerlijke dobbelsteen}) = ? 1/6
- P is een functie die met elke gebeurtenis G een reëel getal P(G) tussen 0 en 1 associeert (die de kans
weergeeft op die gebeurtenis)
3 manieren om over kans na te denken;
1. Subjectieve kansdefinitie (Gokkans)
- Bijvoorbeeld `de kans om de lotto te winnen is erg klein’
- Vaak gebaseerd op ervaring, vaag
2. Empirische kansdefinitie (zweetkans)
- Bijvoorbeeld ‘de kans om 2 te gooien bij eerlijke dobbelsteen’
- dobbelsteen heel vaak opwerpen (n oneindig)
fi
- geregeld berekenen (= benadering voor kans)
n
fi
- kijken waar de waarden naartoe gaan als n toeneemt de `limietwaarde’ is de gezochte kans
n
fi
- P ( A )=lim
n→∞ n
- De wet van de grote getallen (bij veel worpen zeer voorspelbaar)
3. Theoretische kansdefinitie van Laplace (Weetkans)
Bijvoorbeeld kans om 2 te gooien bij eerlijke dobbelsteen
# gunstige uitkomsten = 1 ; # mogelijke uitkomsten = 6
P({2}) = 1/6
4