Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
MAT1511 Assignment 1 (ANSWERS) Semester 1 - 2023 €2,72   Ajouter au panier

Autre

MAT1511 Assignment 1 (ANSWERS) Semester 1 - 2023

 230 vues  5 fois vendu
  • Cours
  • Établissement

MAT1511 Assignment 1 (ANSWERS) Semester 1 - 2023. Questions asked: 1. Use Descartes’ Rule of Signs to determine the possible number of positive, negative and imaginary zeros of P (x). (i) P (x) = x 4 +x 3 +x 2 +x +12. (4) (ii) P (x) = 2x 5 +x 4 +x 3 −4x 2 −x −3. (4) 2. Let P ...

[Montrer plus]

Aperçu 2 sur 10  pages

  • 15 mai 2023
  • 10
  • 2022/2023
  • Autre
  • Inconnu
avatar-seller
,1 ADDENDUM A: YEAR ASSIGNMENT 01 3.2 – 3.5, 8.1, 8.3, 8.4 FIXED CLOSING DATE: 18 May 2023
UNIQUE NUMBER: 768575 NO EXTENSION CAN BE GRANTED 1. Use Descartes’ Rule of Signs to
determine the possible number of positive, negative and imaginary zeros of P (x). (i) P (x) = x 4 +x 3 +x 2
+x +12. (4) (ii) P (x) = 2x 5 +x 4 +x 3 −4x 2 −x −3. (4)
(i) To use Descartes' Rule of Signs to determine the possible number of positive, negative, and
imaginary zeros of P(x) = x^4 + x^3 + x^2 + x + 12, we need to count the sign changes in the coefficients
of the polynomial.


Coefficient sign changes for P(x):
0 sign changes: 12
1 sign change: x
1 sign change: x^2
2 sign changes: x^3
1 sign change: x^4


According to Descartes' Rule of Signs, the number of positive zeros of P(x) is either equal to the number of sign
changes or less than it by an even number. In this case, there are 1 sign change in the coefficients, so P(x) has
either 1 positive zero or 3 positive zeros (less by an even number).


To determine the number of negative zeros, we substitute -x for x in P(x) and count the sign changes:


Coefficient sign changes for P(-x):
0 sign changes: 12
1 sign change: -x
1 sign change: (-x)^2 = x^2
0 sign changes: (-x)^3 = -x^3
1 sign change: (-x)^4 = x^4


According to Descartes' Rule of Signs, the number of negative zeros of P(x) is either equal to the number of
sign changes or less than it by an even number. In this case, there are 3 sign changes in the coefficients, so
P(x) has either 3 negative zeros or 1 negative zero (less by an even number).


Since the number of positive zeros and negative zeros can differ by an even number, the possible combinations
for the number of positive, negative, and imaginary zeros are:


- 1 positive zero and 3 negative zeros (or vice versa).
- 3 positive zeros and 1 negative zero (or vice versa).
- 1 positive zero, 1 negative zero, and 2 imaginary zeros.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur itsbesttutors. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €2,72. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67096 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€2,72  5x  vendu
  • (0)
  Ajouter