Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary of Data Science Skills Python DataCamp modules (325235-M-3) €7,39   Ajouter au panier

Resume

Summary of Data Science Skills Python DataCamp modules (325235-M-3)

1 vérifier
 228 vues  27 fois vendu
  • Cours
  • Établissement

This document includes all modules of the DataCamp modules for Data Science Skills.

Aperçu 4 sur 83  pages

  • 24 mai 2023
  • 83
  • 2022/2023
  • Resume

1  vérifier

review-writer-avatar

Par: rubenkessels • 1 année de cela

avatar-seller
Summary data science skills
Inhoud
Course 1: Introduction ............................................................................................................................. 3
1.1 Python basics ................................................................................................................................. 3
1.2 Python lists .................................................................................................................................... 3
1.3 Functions and packages................................................................................................................. 5
1.4 Numpy (Numeric Python).............................................................................................................. 6
Course 2: Intermediate python ............................................................................................................... 8
2.1 Matplotlib ...................................................................................................................................... 8
2.2 Dictionaries & pandas.................................................................................................................... 9
2.3 Logic, Control Flow and Filtering ................................................................................................. 13
2.4 Loops ........................................................................................................................................... 15
2.5 Case study: hacker statistics ........................................................................................................ 17
2.5 Summary...................................................................................................................................... 19
Course 3: DataFrames............................................................................................................................ 20
3.1 Transforming DataFrames............................................................................................................ 20
3.2 Aggregating DataFrames; Summary statistics ............................................................................. 21
3.3 Slicing and Indexing DataFrames ................................................................................................. 23
3.4 Creating and Visualizing DataFrames .......................................................................................... 25
Course 4: Supply Chain Analytics in Python .......................................................................................... 28
4.1 Basics of supply chain optimization and PuLP ............................................................................. 28
4.2 Modeling in PuLP ......................................................................................................................... 29
4.3 Solve and evaluate model ........................................................................................................... 32
4.4 Sensitivity and simulation testing of model ................................................................................ 34
Course 5: Cleaning Data in Python ........................................................................................................ 38
5.1 Common data problems .............................................................................................................. 38
5.2 Text and categorical data problems ............................................................................................. 41
5.3 Advanced data problems ............................................................................................................. 43
5.4 Record linkage ............................................................................................................................. 46
Course 6: Cluster analysis ...................................................................................................................... 49
6.1 Introduction to clustering ............................................................................................................ 49
6.2 Hierarchical Clustering ................................................................................................................. 53
6.3 K-Means clustering ...................................................................................................................... 56
6.4 Clustering in the real world ......................................................................................................... 59

,Course 7: Machine Learning with scikit-learn (model testing) .............................................................. 63
7.1 Classification ................................................................................................................................ 63
7.2 Regression ................................................................................................................................... 66
7.3 Fine-tuning your model ............................................................................................................... 68
7.4 Preprocessing and pipelines ........................................................................................................ 70
Course 8: Linear classifiers .................................................................................................................... 73
8.1 Applying logistic regression and SVM .......................................................................................... 73
8.2 Loss functions .............................................................................................................................. 75
8.3 Logistic regression ....................................................................................................................... 77
8.4 Support Vector Machines (SVMs in detail) .................................................................................. 80

,Course 1: Introduction
1.1 Python basics
iPython shell = interactive
Python script > text files > use print to generate output
Use a # to add comments in a python script

Calculator




Variables and types
• Variables: named piece of memory that can store a value.
- Syntax: name = value

Usage:
- Compute an expression's result,
- Store that result into a variable,
- And use that variable later in the program.

• Types: Type(‘variable’)
- Float Decimal number
- Integer Whole number
- Strings Text ‘’’’
- Booleans True/False

> Different behaviour using operators for different types of floats.
> When working with different types -> Convert if necessary before using operators.

1.2 Python lists
Lists; store multiple values
• Lists: Lists are used for storing small amounts of one-dimensional data containing different types.



- But, can’t use directly with arithmetical (matrix) operators (+, -, *, /, ...).
- If you need efficient arrays with arithmetic and better multidimensional tools.

• Sublists: One list can contain more sublists

, Subsetting lists (access information in a list; indexes)

• Element: The number in a list. 1.68 is the fourth element
• Index: The index of an element in the list, it starts at 0. 1.68 has index 3



> To select an element using indexing: Fam[3] gives ‘1.68’
> Negative indexes Fam[-1] gives ‘1.89’

• Slicing: Select multiple elements in a list and creating a new list
Example: fam [3:5] returns [1.68, ‘mom’] (element 3 and 4)

> [Start ; End] -> Start is included, End is excluded!
> [:4] returns indexes 0, 1, 2 and 3 (elements 1, 2, 3, 4)
> [5:] returns indexes 5, 6, 7 (elements 6, 7, 8)




Subsetting lists of lists
x = [["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]
X[rows][columns]
x[2][0] Returns: ‘g’ (sublist 2 , index 0)
x[2][:2] Returns: [‘g’, ‘h’] (sublist 2 , index 0 and 1)
Manipulation Lists (update lists for commands)
• Changing the elements in a list (e.g. change, add, remove elements)


1. Change: Fam [7] = 1.86 Changes the height of dad
2. Change slice: Fam [0:2] = [“Lisa”, 1.74] Changes the 0 and 1 index

3. Adding/extend: Fam + [“me”, 1.79] Adds ‘me’ and 1.79 to the list

4. Remove: del(fam[2]) Removes “emma from the list”
> Watch out because the indexes of the list have now changes!

How lists work




> x and y are the referred to the same list. > Solution: create y as a new list.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur jesmen12. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,39. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

71184 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,39  27x  vendu
  • (1)
  Ajouter