Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary of notebooks Data Processing advanced €6,99   Ajouter au panier

Resume

Summary of notebooks Data Processing advanced

 61 vues  6 fois vendu
  • Cours
  • Établissement

Summary of notebooks Data Processing advanced

Aperçu 4 sur 32  pages

  • 1 juin 2023
  • 32
  • 2022/2023
  • Resume
avatar-seller
Summary Data processing advanced

Week 1
Array = ordered and structured collection of elements.
- Arrays are structured around the number of dimensions they contain.

1-dimensional array  vector (e.g., stock price)
2-dimensional array  matrix (e.g., gray scale image)
N-dimensional array  tensor (e.g., RGB image)

How to create an array
My_list = [1, 3, 5, 7, 9]
My_array = numpy.array(my_list)
- My_array outputs  [1 3 5 7 9]

You could also create an array without specifying a python list in advance:
My_array = numpy.array([2, 4, 6, 8])

Dtype()  specifies the datatype for the elements inside the array.

Creating an array from a file
 Numpy.loadtxt()  loads a text file.
 Numpy.load()  loads a binary file.
 Numpy.savetxt()  saves an array in a file
 numpy.savetxt("sample_file.txt", a)
 it saves the array (a) to the text file specified

creating arrays based on range
 numpy.arange(a, b, s)  a is the start point, b the endpoint and s is the step size.
 Can have integers or floats as inputs.
 So, useful when you want to specify the stepsize.
 Numpy.linspace(a, b, i)  a is the start point, b the endpoint and I is the number of
items.
 Useful when you want the specify the amount of items in the range.

Creating arrays of random values
 Numpy.random.random(n)  returns n numbers between 0 and 1
 Numpy.random.uniform(x, y, z)  x is the starting point, y the endpoint and z the
number of items drawn between x and y.
 Numpy.random.randint(x, y, z)  returns z random integers between x and y.
For a normal distribution you can use:
 Numpy.random.normal(x, y, z)

,Shape and size
Examples for array a:
 A.size  shows the total number of element in the array
 A.ndim  shows the number of dimensions.

To check if two arrays are the same you could check:
 Type()  looks if the object types match.
 Numpy.allclose()  looks if the elements all match.
 Id()  looks if the location in computer memory is the same for both objects.

Immutable datatypes python:
 Boolean
 Integer
 Float
 Complex
 String
 Byte
 Tuple

Mutable datatypes:
 List
 Set
 Dictionary

You can specify the datatype of the array when you create the array with the array() function
using the dtype() argument.
- Note: not every combination is possible.
- Example:
strings = ["12", "3", "24"]
z = numpy.array(strings, dtype='int')
you can use the astype() function to convert an existing numpy array to a different type.
- Sometimes, the data types are converted but the content is slightly changed. For
example, when converting from float to integer, then the numbers are rounded down
(floor). For example, when converting an array with only zeros and ones to the data
type Boolean than the 0 is converted to False and the 1 is converted to True.
Example from something that gives an error:
- x = numpy.array(["true", "false"])
- a = x.astype('bool')

indexing a 1-dimensional array is the same as indexing a python list.
A = numpy.arange(10)  [0 1 2 3 4 5 6 7 8 9]
Print(a[0])  0
Print(a[3])  3

A function can also return a linear index. Two examples are:
- argmin
- argmax
these return the index of the minimal value and index of the maximal value.

,Boolean indexing  return all values in the array for which the index is True.
- Example:
index = a > 0.0
b = a[index]
print( b )

as mentioned before, when you want the number of elements in an array, you use the size()
function. You don’t use len() because this can sometimes be misleading
- Example:
A = [[1, 3], [2, 4]]
Len(a)  returns 2
a.size  returns 4

Week 2
Bookshelf analogy for multi-dimensional arrays:
 1d array is a single row of a bookshelf, where a book can be identified by its position
in the row.
 2d array is the whole bookshelf, where a book can be identified by its row number
and its position in the row.
 There has to be the same number of books on every shelf.
 3d array is a room full of bookshelves, where a book can be identified by the number
of the bookshelf, row, and position in the row.
 4d array is a library with rooms with bookshelves, where a book can be identified by
the room, bookshelf, row, and position in the row.
 ...and so on...

Attributes to gain insight about the dimensionality:
- X.ndim  number of dimensions
- X.shape  length of each dimension
 Can for example be (2, 2, 3)  fist 2 tells you how many lists there are in the
array; second 2 tells you how many small lists are in the bigger lists; and 3 tells
you the size of each separate list.
 Looks like:
[[[ 1 3 1]
[ 2 4 2]]

[[11 13 3]
[12 14 4]]]
- X.size  total number of elements

An empty array or an array with only zeros and ones can be created with the empty, zeros
and ones functions.
 One-dimensional empty array  numpy.empty( (3) )
 Two-dimensional array with zero’s  numpy.zeros( (2, 3) )
 Four-dimensional array with ones  numpy.ones( (2, 2, 2, 2) )

, Identity matrix
= two-dimensional square matrix in which all values are zeros, except for the ones along the
diagonal.
This can be created with the eye(n) function.
- Example: numpy.eye(4)
Output:
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

More complex arrays can be created by combining two or more one-dimensional arrays.
- This is called vector stacking.
Horizontal stack:
- Numpy.hstack([x, y, z])
Example:
x = numpy.arange(0, 5)
y = numpy.arange(5, 10)
z = numpy.arange(10, 15)

numpy.hstack([x, y, z])
output = [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
shape = (15, )

Vertical stack:
- Numpy.vstack([x, y, z])
Example:
numpy.vstack([x, y, z])
output =
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
Shape = (3, 5)

You could also split arrays into a list of one-dimensional arrays (vectors).
Horizontal split:
- Numpy.hsplit(x, N)
Example:
a = numpy.arange(0, 5)
b = numpy.arange(5, 10)
c = numpy.arange(10, 15)
d = numpy.vstack([a, b, c])

numpy.hsplit(d, 5)  d is the array you want to split

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur sophiedekkers54. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78075 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,99  6x  vendu
  • (0)
  Ajouter