Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Introduction to statistical analysis YOU CAN DO THIS €6,49   Ajouter au panier

Notes de cours

Introduction to statistical analysis YOU CAN DO THIS

 54 vues  2 fois vendu
  • Cours
  • Établissement
  • Book

This summary is of all the lectures, however i highly advise you to practice as much as possible the inclass assignments. With this summary + praticing i got a 9.3 You can do it!

Aperçu 4 sur 50  pages

  • 1 juin 2023
  • 50
  • 2022/2023
  • Notes de cours
  • Jay
  • Toutes les classes
avatar-seller
Lecture 1
Statistics: The study of how we describe and make inferences form data
• An inference is a conclusion reached on the basis of evidence and reasoning
• Distinction between descriptive and inferential statistics

Types of statistics
Univariate: one variable of things
Bivariate: using two variables to come to conclusion
Multivariate: multiple variables to come to conclusion

Population symbol - N
Sample symbol - n

Descriptive statistics: describing the sample, not the population.
Inferential statistics: When you want measurement on the sample, make statement about
population you use inferental statistics



Units of analysis & variables
Units of analysis: the what or who is being studied
• The unit that you will be able to draw conclusion about
• Typically, all units are the same type of thing in single data set
• E.g. individuals, families, countries, companies, etc.

Variables: a ,measure property of each of the units of analysis
• E.g. age, GDP, household, income, annual revenue.



Levels of measurement
Nominal level Ordinal level Interval level Ratio level

• Group classification • Meaningful ranking • Meaningful ranking • All properties of
ordering interval

• No meaningful • Distance between • Distance are equal • Absolute & has
ranking possible categories unknown/ meaningful zero
not equal point

• Numerical coding • E.g. how often you • E.g. temperature in • If it is zero, it does
arbitrary watch tv degrees celsius not exist

• E.g. Reglion types • E.g. Age
QUALITATIVE—> <—QUANTITATIVE

* We always need to know the level of measurement in order to know which statistical technique
we may use for the given variable

,Continuous vs discrete variables
Continuous variable is measured along a continuum
Discrete variable is measured in whole units or categories.

Example:
• A person’s height - continuous
• A persons number of children - discrete
• Number of doctors in country - discrete
• Surface area (km) of a country - continuous
• Average number of children per woman in a country - continuous



Measures of central tendency & measures of variability
To (univariately) describe the distribution of variables on different levels of measurement

The mean
• Is for ➔ Interval/ratio
• Sample Mean symbol - M
• Changing any score will change mean
• Adding or removing a score will change mean (unless that score is already equal to mean)
• Adding, subtracting, multiplying, dividing each score by a given value (a “constant”) causes the
mean to change accordingly
• Sum differences from the mean is zero
• Sum of squared differences from the mean is minimal
• can only be used for interval/ratio variables
• most useful for describing (more or less) normally distributed variables




The median
• can be used for ordinal or interval/ratio variables
• often used for interval/ratio variables that have skewed distributions
• Ordinal, interval, ratio

,• Median is not as sensitive to outliers as the mean
• Also called 50th percentile
• Whenever n is an even number, the median is the mean value of the two middle cases
• To determine the median from a frequency table, we need to identify the first category that
exceeds 50% in the ‘cumulative percent’ column
• Cummulative percentage is used to find median

The mode
• can be used for nominal, ordinal or interval/ratio variables
• Nominal, ordinal,interval/ ratio
• The mode is the category with the largest amount of cases



Normal/skewed distribution




Tutorial SPSS 1
Data view: one column is one variable, one row is one person

Variable view: each row is one variable, and each column is one property of that variable.
- Variables name do not have space in between them
- Label you write down what you have originally asked in questionnaire or what you mean with
that variable
- Label values box you put in the answers people can ultimately choose “1.00 = never watched”
- In Measure box you put in your level of measurement “Scale = Ratio/interval”
- In Nominal measurement there is no mean or median

Analyzing Data
- Click analyze (top of the window) – and then descriptive statistics and then frequencies and
then the type of chart you will like
- All the variable son the right side are the variables hat spss will analyze
- When saying modes, you use “the labels you gave” instead of “the code number you gave it”
- In cumulative percentage if its above 50%
- Valid percent exclude the missing, the percent includes it

Analyzing on Case
- Click on data, then select cases, click on if, click variable, and type in value you want to check
exclusively. So here you check only males, females, or only country, etc.

, Lecture 2
Measure of variability
Measures of central tendency alone carry not enough information to adequately describe
distributions of variables, we need a second type of measures: Measuring variability

Different type of variables are called Dispersion/Variability

The Range: The distance between highest to lowest.
- can be calculated for ordinal, interval, ratio
- Always reported together with maximum and minimum score
- Is sensitive to outliers


Interquartile range (IQR)
- Based on “quartiles” that split our data into four equal groups of cases
- IQR based on distance between Q1 and Q3


The variance
Is based on the Sum of Squares, is the squared distance from the mean. For the calculation
of the variance, it matters whether we have sample data or population data.

How can we interpret the value of the variance?
• We don’t, but: “everything is meaningful in comparison” (i.e. when comparing variances across
groups, we can make comparative statements about more/less dispersion around the mean)
• For the purpose of interpretation, we calculate another measure of variability: the standard
deviation


Why are there two different variance formulas for sample data / population data?
• We often use the sample variance as an ‘estimator’ for the population variance (which is typically
unknown)
• When we calculate sample variance, we therefore divide by n-1, to arrive at an unbiased
estimator of the population variance
• Note how this is particularly relevant in small samples

What is the difference between the de nitional and the computational formula of the
variance?
• Different formulas for calculating the same thing (we use definitional formula)
• Advantage of computational formula: no need to calculate individual distances from
the mean





fi

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur naomialcocer1. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

84669 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,49  2x  vendu
  • (0)
  Ajouter