Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
volledige samenvatting Cel 3 (1e bach GNK/THK UGent) €13,99
Ajouter au panier

Resume

volledige samenvatting Cel 3 (1e bach GNK/THK UGent)

 107 vues  7 fois vendu

Samenvatting op basis van de cursus en de lessen. Gemaakt in . (geslaagd met 18/20)

Aperçu 4 sur 94  pages

  • 2 juin 2023
  • 94
  • 2022/2023
  • Resume
Tous les documents sur ce sujet (4)
avatar-seller
ASTHK
Cel 3 :Energie en
metabolisme
H1: metabolisme

=verzamelnaam voor alle chemische reacties waarbij energie wordt
geproduceerd/verbruikt


1. Inleiding
 3 soorten metabolische routes:
1) Lineaire routes: bv vorming glucose
2) Cyclische routes: krebzuurcyclus
3) Vertakte routes: intermediairen van bepaalde weg kunnen startpunten
zijn voor nieuwe weg


 Metabolisme bestaat uit anabolisme en katabolisme (fig 1)

 Anabolisme: synthese van meer complexe producten uit eenvoudige
producten = ENDERGONISCH: energie wordt verbruikt
 Vorming NAD+, NADP+, ADP + Pi
 Spiercontractie, zenuwgeleiding, celdeling…

 Katabolisme: afbraak van meer complexe producten tot eenvoudige
producten met vorming van CO2, H2O,.. bij zoogdieren: verbruik O2
(=Oxidatie). =EXERGONISCH: energie komt vrij!
o Energie komt vrij: wordt gebruikt bij anabolisme voor verschillende
processen (bv propagatie zenuwpulsen, transport, celgroei,
celdeling…)
o Vorming intermediairen voor biosynthese (bv pyruvaat)
o ATP vormen
o Transfer van reducerende equivalenten naar NAD+ en NADP+ met
vorming van NADPH, NADH en een proton H+

Pyruvaat = intermediair: ofwel wordt deze door cel verder omgezet in CO2
en H2O, ofwel wordt dit intermediair als molecule verder verbruikt.
1

, Aminozuren, vetzuren en koolhydraten = voornaamste brandstoffen
 keuze is afhankelijk van type orgaan, voedingstoestand en hormonale status
 bv lever van diabeticus/ondervoed persoon: bevat te weinig
koolhydraten, daarom dienen lipiden als brandstof bij
diabetici/ondervoede personen
 erytrocyten/hersenweefsel: in normale toestand worden koolhydraten
als brandstof gebruikt)
 hart-en skeletspier: omzetting energie uit metabole processen in
mechanische

levende organismen: voortdurend ATP nodig (=Adenosine Tri Phosfate)
 mechanische energie verrichten
 biosynthese van macromoleculen uitgaande van eenvoudiger
precursoren
 transport van moleculen
 planten: fotosynthese


2. ATP als energiedrager
 ATP (fig 2)
 bestaat uit ribose, adenine & trifosfaat-eenheid: adenine is via
glycosidische binding verbonden met ribose ter vorming van adenosine
 actieve vorm: met Mg2+
 2 uiterste fosforylgroepen (beta en gamma) : energierijkst door
fosfoanhydrische bindingen: hydrolyse van energierijke
fosfoanhydridebindingen is de vrije energie die ontstaat veel groter dan
deze van een gewone fosfaat-esterbinding
o producten ontstaan bij hydrolyse van een energierijke binding zijn
stabieler dan oorspronkelijke binding
 synthese van ATP: vorming terminale fosfaatgroepen ATP
 afbraak van ATP: hydrolyse(+ H2O) terminale fosfaatgroepen ATP =>
energie komt vrij

ATP + H2O => ADP + Pi + H+
ATP + H2O => AMP + PPi
PPi+ H2O => Pi + Pi + vrijstelling energie

Pi = orthofosfaat
PPi= 2 Pi’s met vorming fosfoanhydridebinding (=Pyrofosfaat)

2

, AMP=adenosinemonophosfate
ADP= Adenosinediphosfate

 G = verschil in vrije energie tss reactieproducten en reagentia
 G < 0: spontane reactie => exergonisch: toenemende wanorde, K(ev)
>1
 G > 0: niet-spontane reactie => endergonisch: K(ev) < 1
 G = 0: reactie in evenwicht


 G ° => verschil in vrije energie bij standaardomstandigheden: pH = 0,
concentratie protonen = 1M


 G°‘ => verschil in vrije energie bij standaardomstandigen bij biochemische
reacties: pH = 7 en dus concentratie protonen = 10-7 M
 gewijzigde standaardomstandigheden


 Fysiologische G = actuele concentraties van biochemische producten
 Concentraties mM!
 Werkelijke vrije energie van ATP-hydrolyse is 76% hoger dan de
standaard energie van hydrolyse.
 Er bestaan verschillen in G bij verschillende weefsels doordat
concentraties ATP, ADP en Pi verschillen


 Koppeling van reacties: G is additief (totale delta G= som van alle delta G’s
apart)
 Reacties met positieve G kunnen doorgaan indien ze gekoppeld
worden aan andere reacties met negatieve G zodat de uiteindelijke
som < 0!
 enzym nodig voor koppeling: (in biochemische processen) vaak
afsplitsing ATP(=fosforylatie), kan ook met GTP, UTP en CTP
o A + B + ATP => AB + ADP + Pi
Voor veel biochemische reacties is de inbreng van energie door
afsplitsing van gamma-fosfaat onvoldoende
Oplossing 1) hydrolyse van ATP/XTP tot AMP+ PPi
 Daarna verdere hydrolyse van PPi tot 2 Pi => vrijstellen
additionele energie!!!
A+ ATP => AMP+A + PPi

3

, PPi = 2 Pi

Oplossing 2) vorming pyrofosfaat adduct
 Bv A+ ATP => A-PPi + AMP


 Lipiden = 3x zo hoge calorische waarde als koolhydraten/aminozuren
 Komt door oxidatietoestand van lipiden: koolstofatomen in koolhydraten
zijn meer geoxideerd dan koolstofatomen in lipiden


 ATP als energiedrager
 Zeer onderhevig aan turn-over: iedere ATP molecule wordt per dag
1000-1500 keer gerecycleerd
 Rustend persoon: verbruikt 40kg ATP per dag
 ADP + ADP => ATP + AMP -> reactie wordt gekatalyseerd door
adenylaat kinase (=myokinase)
 ATP wrdt vooral gevormd tijdens oxidatieve fosforylatie
 ATP: fosfaatgroepdonor

Redenen voor actieve karakter van ATP:

1) Fosfaatrest is bij pH=7 geïoniseerd en veroorzaakt elektrostatische
afstoting
o Bij splitsing komt deze repulsie-energie vrij en veroorzaakt een
negatieve G – spontaan
2) Resonantie van reactieproducten (ADP+P+H+) : stabieler, dus reactie
verschuift naar rechts
3) Reactie verloopt naar rechts door voortdurend wegnemen van H+ die
door omgeving wordt opgenomen (=le chatelier)


3. Andere energierijke verbindingen die ook een fosfaatgroep aan ADP
kunnen afstaan (hogere fosforyl-groe-transferpotentiaal dan ATP)
 Enolfosfaten
fosfoënolpyruvaat: gevormd op bijna einde van glycolyse
 een zeer onstabiel intermediair wordt gevormd (een enol) (=zorgt
voor hoge energie-inhoud van PEP)
 Dit onstabiele enol tautomerizeert tot stabielere ketonvorm (=het
eigenlijke pyruvaat): afsplitsen P mbv H2O (beetje E vrij) dan
tautomerie(veel E vrij) en P binden aan ADP tot ATP (ATP synthese)
4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur ASTHK. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €13,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52355 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€13,99  7x  vendu
  • (0)
Ajouter au panier
Ajouté