Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting - Wiskunde 'Module 4; driehoeksmeting in willekeurige driehoeken' GO! Onderwijs €4,99
Ajouter au panier

Resume

Samenvatting - Wiskunde 'Module 4; driehoeksmeting in willekeurige driehoeken' GO! Onderwijs

 38 vues  1 fois vendu

Dit document is een samenvatting van 'Module 4; driehoeksmeting in willekeurige driehoeken', uit het boek 'NANDO 4D' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Aperçu 2 sur 5  pages

  • 24 juin 2023
  • 5
  • 2022/2023
  • Resume
  • Lycée
  • 2e graad
  • Wiskunde
  • 4
Tous les documents sur ce sujet (65)
avatar-seller
thibauttaminiau
Driehoeksmeting in willekeurige driehoeken

1. Cosinusregel en sinusregel voor willekeurige driehoeken

1.1 Cosinusregel
Definitie
De cosinusregel geeft het verband weer tussen de 3 zijden van een driehoek en de cos van een hoek.
Formules
a² = b² + c² - 2bc ⋅ cos Â
̂
b² = a² + c² - 2ac ⋅ cos B
c² = a² + b² - 2ab ⋅ cos Ĉ
Gebruik
De cosinusregel wordt gebruikt om de lengte van de derde zijde van een driehoek te berekenen als
de lengte van beide andere zijden en de grootte van hun ingesloten hoek gekend zijn.
Bewijs
Gegeven: ΔABC is rechthoekig
Te bewijzen: a² = b² + c² - 2bc ⋅ cos Â
Bewijs:
- Teken de hoogtelijn [BD]
- ΔBCD is rechthoekig, er geldt:
 a² = |BD|² + |DC|² -> |DC| = b - |AD|
 a² = |BD|² + (b - |AD|)² -> merkwaardig product: (A – B)² = a² - 2ab + b²
 a² = |BD|² + b² - 2b ⋅ |AD| + |AD|² -> stelling van Pythagoras in ΔBAD (c² = |BD|² + |AD|²)
|AD|
 a² = b² + c² - 2b ⋅ |AD| -> in ΔBAD: cos  = of |AD| = c ⋅ cos Â
c
 a² = b² + c² - 2bc ⋅ cos  -> a² = b² + c² - 2bc ⋅ cos  = a² = b² + c² - 2bc ⋅ cos Â

1.2 Sinusregel
Definitie
In elke driehoek zijn de zijden evenredig met de sinussen van de overstaande hoeken. Dit noemen
we de sinusregel.
Formule
a b c
= ̂ = ̂
sin  sin B sin C
Gebruik
De sinusregel wordt gebruikt om de lengtes van de zijden van een driehoek te berekenen als de
hoeken en één zijde gekend zijn.
Bewijs
Gegeven: ΔABC is een scherphoekige driehoek
a b c
Te bewijzen: sin  = sin B̂ = sin Ĉ
Bewijs:
In ΔBAD geldt: In ΔBCD geldt:
|BD| |BD|
 sin  = c
 sin Ĉ = a
 |BD| = c ⋅ sin   |BD| = a ⋅ sin Ĉ

 c ⋅ sin  = a ⋅ sin Ĉ
c a
 sin Ĉ = sin Â

, 1.3 Oplossen van willekeurige driehoeken
Drie zijden gegeven
Om de hoeken te berekenen maken we gebruik van de cosinusregel.
Twee zijden en de ingesloten hoek zijn gegeven
Bereken eerst de ontbrekende zijde met de cosinusregel.
Nadien bereken je de hoeken eveneens met de cosinusregel.
Eén zijde en twee hoeken zijn gegeven
Bereken eerst de ontbrekende hoek. (door 180° - α – β te doen)
Bereken nadien de zijden met behulp van de sinusregel.

2. Toepassingen

2.1 Lengte van een zwaartelijn
Gegeven:
In ΔABC is:
̂ = 80°
B
|AB| = 19 cm
|BC| = 24 cm
en BD een zwaartelijn.
Gevraagd:
Bereken de lengte van [BD].
Oplossing:
We werken in ΔABC:
̂
|AC|² = |AB|² + |BC|² − 2 ⋅ |AB| ⋅ |BC| ⋅ cos B
|AC|² = 19² + 24² − 2 ⋅ 19 ⋅ 24 ⋅ cos 80°
|AC| ≈ 27,90399
|BC|² = |AB|² + |AC|² − 2 ⋅ |AB| ⋅ |AC| ⋅ cos Â
|AB|² + |AC|² − |BC|²
cos  =
2 ⋅ |AB| ⋅ |AC|
19² + 27,90399² − 24²
cos  =
2 ⋅ 19 ⋅ 27,90399
 ≈ 57°53′ 22′′
We werken in ΔABD:
|AC|
|AD| = 2
≈ 13,952
|BD|² = |AB|² + |AD|² − 2 ⋅ |AB| ⋅ |AD| ⋅ cos Â
|BD|² = 19² + 13,952² − 2 ⋅ 19 ⋅ 13,952 ⋅ cos (57°53′ 22′′)
|BD| ≈ 16,54817
Antwoord:
|BD| is ongeveer 16,54817 cm.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur thibauttaminiau. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €4,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

50064 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€4,99  1x  vendu
  • (0)
Ajouter au panier
Ajouté