Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
MAT2613 EXAM PACK 2023 €3,25   Ajouter au panier

Examen

MAT2613 EXAM PACK 2023

 7 vues  0 fois vendu
  • Cours
  • Établissement

the document has the latest questions and elaborate answers

Aperçu 4 sur 106  pages

  • 28 juin 2023
  • 106
  • 2022/2023
  • Examen
  • Questions et réponses
avatar-seller
MAT2613 EXAM
PACK 2023

UPDATED QUESTIONS
AND ANSWERS




For inquiries and assignment help
smartwritingcompany@gmail.com

, 3



I OCTOBER/NOVEMBER )0/7EXAMINATION PAPER AND MEMORANDUM I

QUESTION l

1.1 Use a proof by contradiction to prove that the following statement is true.

2n ;::: 2n for all positive integers n.

[Hint: You may assume the well ordering axiom: Every non-empty set of positive integers has a least
Open Rubric




~~] 00

SOLUTION
Contradiction: There exist at least one positive integer m such that 2m < 2m.
Assumption false for m =
1 and m =
2. The statement must then be: There exist at least one positive integer
m > 2 such that 2m <2m.
Let M = (m lm > 2, m EN, 2m < 2m}. This set M bas a least element by the well·ordening axiom.
Let mo be this element. Then mo > 2 and 2mo < 2m 0 (1)
However, mo - 1 < mo and mo- 1 ¢ M, so 2<mo-l) ;::: 2 (mo- 1) (2)
and so from (1) and (2) we have since (2) is 2mo ;::: 4m0 - 4 that 4m0 - 4 ~ 2mo < 2m0 , i.e 2m0 < 4 or m0 < 2
which is a contradiction.

1.2 Give the contrapositive of the following statement:
00

If L, Or is convergent then (an) is a null sequence. (2)
rei


[10]
SOLUTION
00
If (an) is not a null sequence then L:ar is divergent.
r•l



QUESTION%

Let (an) be the sequence of real numbers defined by a 1 = I and an+l = ,JiCi;,for n EN.
Show that (an) converges and find the limit.
[Hint: Show that 1 ~an < an+l < 2 for all n EN using mathematical induction.] f81

SOLUTION
a1 = 1 and On+1 = -J24,'if n .
Following the hint we have to prove that 1 < an+2 < 2 'if n. (*)
~ an
For n = 1 we have a 1 = 1 ami a 2 = ,J2 thus (*) is true for n = I.
Suppose(*) is true for n = k, i.e 1 ~ at < ak+l < 2 (**)
Then we have from(**) that 2 ~ 2ak < 2aA:+1 < 4 so that ,J2 ~ ,J2iii < ~ < 2.

t
Open Rubric

, 4


But

A - ak+l and J2ak+l = ak+2

so 1 < .J2 ~ ak+l < ak+2 < 2 and the equation (**)is true.

We thus have an increasing sequence which is bounded above by 2.

Suppose
lim an
n-too
= L. Then also lim an+I
11--tOO
= L
We have
lim an+ 1 lim .J2ci:, = Jlim 2an
= n-too
11--too n-too




L = .fi-JI i.e -Jl = v'2 or L =2.
QUESTION3
Prove from first principles that the sequence (an) with

2n 2 +5
a1 = 0, an = ., when n ?: 2
n-- 1
converges. (7)
SOLUTION
2n 2 + 5 2 + 2..
.
We suspect that lrm an
n-too
= .
lun
11--tOO n 2 - 1
= lim ~ =2
n-too ( - ~
'-"
/



Let c > 0 be given. For n :;::: 2 we have




Since

> n when n :;::: 2 we have


lan- 21
7 7/
- -- < - for n > 2
n -l-n
2 -
Clearly
7 7
-<e~n>
n e
By the Archimedean principle there exists ;:: N with N > ~.
f:

For such an N e N we have
• 7 7
n 2: N => n > - => lan - 21 < - < c
e n

, 5


Since c > 0 was arbitrary we have lim a, = 2.
n~oc




QUESTION 4

4.1 Test each of the following series for absolute convergence, conditional convergence or divergence:
r'
4.1.1
oo
I:
r=l
<- 1r ·
3r + 3r1
(4)


SOLUTION

. Ia, I
1un
11--HXl
= I'lm
ri~OO-
3"
3n!
rl
+V=
.3 '
~
1·un
IJ~OO-
-3,--
3JJ!
~+ 1
= 3- V/
1



3
since (
3nJ
; \is a null sequence


lim a, '::f= 0 and fr~e f (-1) a, is divergent.
Since lim
-00 lanl '::f= 0, -00 contrapositive of the vanishing condition
~


1
<- 1y ~~Y'2r
00
4. t. 2 L r::;;===== (7)
r=l 1 2 -



SOLUTION
1
Let lar I = ~~r:==:<===
.:/2r2- 1
1 1
We have ~ > 3r::;-;; =-1 --
1 2


/
2
Y'2r - 1 -v2r·/' rJ
/ 1 1
= 2- < 1
00
By the p- test p 1 the series L diverges and hence 1 L
00
diverges so that ~~.l
~

diverges.
3 r=lr3
2
23 r=ol r' 2 3
r•l 2
2r - 1


Forconditionalllyconvergence: We have lim
r---+00 v
lari.=.P(A1so2(r + 1)2 - 1 > 2r 2 -1 and thus




so that the series f
r=l
larl is decreasing. We thus have that the given series f
r=l
(-1Y
1
J2r2 - 1
is conditiondtt{
convergent:


[Iff (x} = (2x2 - 1r 3
I
then
}
f 1 (x) = -- (2x 2 -
3
1r'.
4
4x = --
4
3
(2x 2 - 1r 4
3
< owhich shows that the series
L larl is decreasing]
4.1.3 L (-1Y
00

r=2
(1
2
r
sin-
r
7r) (7)

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur AlectaGroup. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €3,25. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67866 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€3,25
  • (0)
  Ajouter