Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
samenvatting wiskunde 2 examencommissie derde graad €3,99   Ajouter au panier

Resume

samenvatting wiskunde 2 examencommissie derde graad

Theoretische samenvatting van de leerstof wiskunde 2 aan de examencommissie, richting wetenschappen wiskunde.

Aperçu 4 sur 41  pages

  • 28 juillet 2023
  • 41
  • 2022/2023
  • Resume
  • Lycée
  • 3e graad
  • Wiskunde
  • 2
Tous les documents sur ce sujet (67)
avatar-seller
lotteloots
Wiskunde II


1.1 Complexe getallen


Complexe getallen
complex getal: een complex getal is een getal van de vorm z = a + bi (a,b ∈ R )
Alle complexe getallen samen vormen de verzameling C
a: het reële deel van het complex getal (a = Re(z))
b: het imaginaire deel van het complex getal (b = Im(z))
- als b = 0 dan is het complex getal reëel: R ⊂ C
- als a = 0 en b ≠ 0, dan noemen we het getal zuiver imaginair
a + bi = c + di ⇔a = c en b = d
a + bi = 0 ⇔ a = 0 en b = 0
i is een vierkantswortel uit -1 ⇔ i² = -1
notaties
- a + bi met i² = -1
- (a,b)

grafische voorstelling in het vlak van Gauss
elk complex getal z = a + bi is volledig bepaald door het koppel reële getallen (a,b)
- dit koppel beschouwen we als het coördinaat van een punt P in een vlak waarin
een georthonormeerd assenstelsel is aangebracht
- beeldpunt van het complex getal z = a +bi is het punt P(a,b)
- is b = 0 dan is z = a reëel en ligt het beeldpunt van z op de x-as, de reële as
- is a = 0 en b ≠0 dan is z = bi zuiver imaginair en ligt het beeldpunt van z op
de y-as de imaginaire as
- complexe vlak, vlak van Gauss: vlak dat ontstaat tussen x-as, y-as en
evenwijdige rechten door punt P(a,b)




Rekenen met complexe getallen

Som en verschil
gegeven: z 1 , z 2 ∈ C waarbij z 1=a+ bi en z 2=c + dimet a , b , c , d ∈ R
z 1+ z2 =( a+bi)+(c +di)=( a+c)+(b+ d) i
z 1−z 2=(a+bi)−(c+ di)=(a−c )+(b−d )i

tegengestelde complexe getallen
= twee complexe getallen waarvan de som 0 is
tegengestelde getal van een complex getal z wordt met -z genoteerd

p. 1 /41

, Wiskunde II


eigenschappen C, +
inwendig en overal gedefinieerd
∀ z 1 , z 2 ∈C : z1 + z 2 ∈ C
associatief
∀ z 1 , z 2 , z 3 ∈ C :( z 1 + z 2)+ z 3=z 1 +( z 2 + z 3)
neutraal element
∃0 ∈ C , ∀ z 1 ∈C : z 1 +0=z 1=0+ z 1
symmetrisch element
∀ z 1 ∈C ,∃ !−z 1 ∈C : z1 +(−z 1)=0=(−z 1)+ z 1
commutatief
∀ z 1 , z 2 ∈C : z1 + z 2=z 2 + z 1
Product van twee complexe getallen
gegeven: z 1 , z 2 ∈ C waarbij z 1=a+ bien z 2=c + dimet a , b , c , d ∈ R
z 1∗z 2=(a+bi )∗(c +di)
¿ ac +bci+adi+bdi ²
i²=-1
¿(ac−bd )+(bc +ad )i

eigenschappen C,*
inwendig en overal gedefinieerd
∀ z 1 , z 2 ∈C : z1∗z 2 ∈C
associatief
∀ z 1 , z 2 , z 3 ∈ C :( z 1∗z 2 )∗z 3=z 1∗(z 2∗z 3)
neutraal element
∃1 ∈C , ∀ z 1 ∈ C : z 1∗1=z 1=1∗z1
opslorpend element
∃0 ∈ C , ∀ z 1 ∈C : z 1∗0=0=0∗z1
commutatief
∀ z 1 , z 2 ∈C : z1∗z 2=z 2∗z 1
distributief
∀ z 1 , z 2 , z 3 ∈ C : z 1∗(z 2 + z 3)=z 1∗z 2+ z 1∗z3
complex toegevoegd getal van een complex getal
complex toegevoegde getallen: getallen die hetzelfde reële deel maar tegengestelde
imaginaire delen hebben
bv. 5-2i is de complex toegevoegde van 5+2i
notatie: z
z = a + bi dan is z=a+bi = a - bi

eigenschappen
1. ∀ z ∈C : z=z
2. ∀ z ∈C : z+ z ∈ R
3. ∀ z ∈C : z∗z ∈ R
4. ∀ z 1 , z 2 ∈C : z1 + z 2=z 1 + z 2
5. ∀ z 1 , z 2 ∈C : z1∗z 2=z 1∗z 2
quotiënt van twee complexe getallen
→ vermenigvuldig teller en noemer met het complex toegevoegde getal van de noemer
algemeen:


p. 2 /41

, Wiskunde II


a+bi (a+ bi)∗(c−di) (ac+ bd)+( bc−ad )i ac+ bd bc−ad
= = = + i
c +di (c+ di)∗(c−di) c ²+d ² c ²+ d ² c ²+d ²
machtsverheffing in C
we definiëren machten met een natuurlijke exponent zoals in het veld R,+,*

∀ a+bi ∈C , ∀ n ∈ N 0 ¿ 1 }:¿ ¿
n-factoren
(a+bi)0=1 (a+bi≠0)
(a+bi)1= a+bi
→ omdat C,+,* een veld is, heeft de machtsverheffing in C dezelfde eigenschappen als in
R

machten van i
i1 = i
i2 = -1
i3 = i2 * i = (-1) *i = -i
i4 = i² * i² = (-1) * (-1) = 1
dus:
- i1 = i
- i² = -1
- i³ = -i
- i4 = 1
machten met i met een hogere exponent berekenen we met behulp van deze formules
door eerst in de exponent een zo groot mogelijk viervoud af te splitsen


Het vlak van Gauss

Modulus r
= afstand van het beeldpunt P van z tot de oorsprong
r =mod(z )=¿ z∨¿ √❑

Argument α
= het argument α van het complex getal z is de georiënteerde hoek die de positieve
reële as maakt met de halfrechte [OP
a
a=arg(z ); tan α =
b
- meestal kiezen we - 180° < arg (z) ≤ 180° (hoofdwaarden)

Goniometrische vorm
een complex getal z = a + bi kunnen we schrijven in de goniometrische vorm
z = r (cosα + i sin α )

Omrekeningsformule
z=r (cos α +isin α ) naar z = a +bi
a=r cos (α )
b=r sin( α )



p. 3 /41

, Wiskunde II


Product van twee complexe getallen
z 1=r 1 (cos α 1 +i sin α 1 )
z 2=r 2 (cos α 2 +i sin α 2 )
¿> z 1∗z 2=r 1∗r 2 ¿α 1+α 2 ¿ ¿
- de modulus van het product van twee complexe getallen is het product van de
moduli van de twee complexe getallen
- het argument van het product van twee complexe getallen is de som van de
argumenten van de twee complexe getallen

Machtsverheffing van complexe getallen
z=r (cos α +isin α )
¿> z n =r n (cos n α +isin n α )
- de modulus van de n-de macht (n is een natuurlijk getal) van een complex getal is
de n-de macht van de modulus van dit complex getal
- het argument van de n-de macht (n is een natuurlijk getal) van een complex getal
is het n-voud van het argument van dit complex getal
Formule van Moivre
! is r = 1?
∀ n ∈ N :¿

Quotiënt van complexe getallen
z 1=r 1 (cos α 1 +i sin α 1 )
z 2=r 2 (cos α 2 +i sin α 2 )
z1 r1
¿> = (cos (α 1−α 2)+sin(α 1−α 2 ))
z2 r2
- de modulus van het quotiënt van twee complexe getallen is het quotiënt van de
moduli van de twee complexe getallen
- het argument van het quotiënt van twee complexe getallen is het verschil van de
argumenten van de twee complexe getallen


Binomiale vergelijkingen in C
binomiale vergelijking: vergelijking in C van de vorm: zn = a met N0 en a ∈C
dus: zn - a = 0
n
z =a≤¿ z is de n−de machtswortel uit a
1.2 Matrixrekening


Matrices
matrix: met m rijen en n kolommen, een matrix met dimensie m x n of een m x n-
matrix
- elementen: reële getallen aij met i ∈ {1,2,...,m} en j ∈ {1,2,...,n}
(soorten matrices)
gelijke matrices
= twee m x n-matrices noemen we gelijk als elke twee overeenkomstige elementen
gelijk zijn
a11 = b11

p. 4 /41

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lotteloots. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €3,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

62799 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€3,99  1x  vendu
  • (0)
  Ajouter