Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
summary statistical modelling for communication research €5,49   Ajouter au panier

Resume

summary statistical modelling for communication research

9 revues
 607 vues  25 fois vendu
  • Cours
  • Établissement

summary of a gentle and critical introduction to statistical inference, moderation and mediation. I had a 9.1 for my exam, so if you study this summary, you will pass for sure!

Aperçu 4 sur 44  pages

  • 14 octobre 2017
  • 44
  • 2017/2018
  • Resume

9  revues

review-writer-avatar

Par: joyjelisa • 4 année de cela

review-writer-avatar

Par: martulina99 • 5 année de cela

review-writer-avatar

Par: cathalijnedevijlder • 5 année de cela

Clear summary with almost all important issues in it. However, one important part is missing, which is part 3.3 about Precision, Standard Error and Sample Size.

review-writer-avatar

Par: xconniex2569 • 6 année de cela

reply-writer-avatar

Par: lisajanssen2 • 6 année de cela

Could you please explain why you rated my summary with one star? I would like to know so I can improve my summaries in the future :)

review-writer-avatar

Par: ievapurvaneckait • 6 année de cela

review-writer-avatar

Par: loicjikko • 6 année de cela

review-writer-avatar

Par: laurastreefkerk • 6 année de cela

Afficher plus de commentaires  
avatar-seller
Statistics lecture 1


• Different types of statistics:
- Descriptive statistics: summarize your data.
- Inferential statistics: offers techniques for making statements about a larger set of observation
from data collected for a smaller set of observations. The mostly used sampling strategy is
random sampling.
- Multivariate statistics: moderation, mediation.


Inferential statistics: you want to generalize from a sample to the population. You test the significance
of your results.
- With inferential statistics, we draw a random sample.
- You calculate an average based on your sample and you generalize this to your population.


Probability distribution: The distribution of the candies tells you how lucky you are to get a certain
number of yellow candies. In 4 percent of the candy bags there is a number of 7 candies. The chance
of you getting 7 candies is thus 4 percent.


• Different kinds of tests with moderation & mediation:
- Bivariate: you use two variables (is age related to the amount of texting?)
- Multivariate: You use three or more variables (is the relationship between age and texting
controlled by education level).


Moderation (W is the moderator) Mediation (M is the mediator)




1

,Chapter 1


Collecting data: a researcher wants to make general statements applicable to the population. Collecting
data, however, is expensive. A researcher therefore tries to collect as little data as necessary.


Sampling space: the collection of all possible outcomes (if you have a bag of 10 candies and you want
to know all the possible outcomes for the number of yellow candies in the bag, the answer is then 10).


Sample statistic: a number describing a property of the sample. For instance, one bag contains four
yellow candies, another bag contains seven, and so on.


Random variable: the variable ‘amount of yellow candies in a bag’ is a random variable, because the
score of the variable depends on chance.


Sampling distribution: The distribution of the samples you selected.




Probability distribution: The probability of selecting a certain sample.




The expected value: the average of the sampling distribution of a random variable. In the sampling
distribution above (the blue one), the expected value is 2. The expected value equals the proportion of
the population, but only for all sample statistics that are unbiased estimators of the population
statistics.


Parameter: the population statistic.


2

,Biased estimators: the amount of yellow candies in a bag is a biased estimator for the amount of
yellow candies in the parameter. The proportion of the yellow candies in a bag is an unbiased
estimator for the proportion of yellow candies in the parameter.


A sample is representative of a population if variables in the sample are distributed in the same way
as in the population. A random sample is likely to differ from the population due to chance, so then we
say the sample is ‘in principle representative’ for the population.


Continuous variable: a variable is continuous when there is always a new value to think of in-between
two values. An example is weight. Between the value 2 grams and 3 grams, there is an infinite amount
of different values in-between (for example, 2,390137 gram). Due to this, it is impossible to construct
a probability distribution of the sampling space. You cannot calculate the chance of having a candy
bag of 2,8 grams, because the chance of finding a candy bag that exactly weighs 2,8 grams (and not
2,800001 grams) is very small. This problem can be solved by taking a range of values instead of a
single value. For example, the weight between 2,75 and 2,85. The distribution then has to be portrayed
differently. It is called a probability density function and it is a curve.




This is a normal distribution. The probability of values up to the threshold value (= in this case 2,8)
and higher are called ‘p values’. The probability of values up and including the threshold value is
known as the left-hand p value and the probability of values above and including the threshold value is
called the right-hand p value.




3

, The sampling distribution sticks to
the population because the
population statistic (parameter), for
example, the average weight of all
candies, is equal to the mean of the
sampling distribution. The sampling
distribution sticks to the sample
because it tells us which sample
means we will find with what
probabilities. The sampling
distribution is the vital link
connecting the sample to the
population. We need it to make
statements about the population
based on our sample.




Chapter 2


Bootstrap sample: when a large sample from the initial sample is drawn. For each bootstrap sample,
the sample statistic of interest is calculated and we collect these as our sampling distribution. We
usually want about 5000 bootstrap samples for our sampling distribution. To construct a sampling
distribution from bootstrap samples, the bootstrap samples must be exactly as large as the original
sample. If we allow every case in the original sample to be samples only once, each bootstrap sample
contains all cases of the original sample, so it is an exact copy of the original sample. Different
bootstrap samples could thus not be created. If we do allow the same case to be chosen more than
once, we sample with ‘replacement’. The same case can occur more than once in a sample. Bootstrap
samples that are samples with replacement can vary. The probability of picking a certain color always
stays the same with sampling with replacement. It is ok to sample without replacement as long as the
population is much larger than the sample. If the population is much larger, the probabilities more or
less remain the same during the sampling process, so calculating probabilities as if the probabilities do
not change is not a problem. The bootstrap distribution resembles the true sampling distribution that
we would get if we draw lots of samples directly from the population. Yet, this can only happen when
the initial sample is not too small and more or less representative of the population. The main problem
with the bootstrap approach is that there is a chance that the sample does not reflect the population



4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur lisajanssen2. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €5,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

79271 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€5,49  25x  vendu
  • (9)
  Ajouter