Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Complete exam material of Introduction to Time Series and Dynamic Econometrics, Bachelor Econometrics, Vrije Universiteit Amsterda, €8,99   Ajouter au panier

Notes de cours

Complete exam material of Introduction to Time Series and Dynamic Econometrics, Bachelor Econometrics, Vrije Universiteit Amsterda,

 74 vues  3 fois vendu
  • Cours
  • Établissement

Complete summary of the exam material for the course Introduction to Time Series and Dynamic Econometrics in the 3th year of the Bachelor of Econometrics at the Vrije Universiteit Amsterdam, or the minor Applied Econometrics. The summary is in English. All lectures are in the summary, with extra i...

[Montrer plus]

Aperçu 3 sur 26  pages

  • 11 octobre 2023
  • 26
  • 2023/2024
  • Notes de cours
  • K. moussa
  • Toutes les classes
avatar-seller
Introduction to Time Series and Dynamic
Econometrics
Charlotte Hoogteijling
October2023


Contents
0 Preparatory Notes 3
0.1 Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Law of Total Expectation . . . . . . . . . . . . . . . . . . . . . . 3
0.3 Geometric series . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Basic Properties of Time Series 4
1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Strict and weak stationarity . . . . . . . . . . . . . . . . . . . . . 4
1.3 Unconditional and conditional moments . . . . . . . . . . . . . . 5
1.4 Sample moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Autocorrelation function (ACF) . . . . . . . . . . . . . . . . . . . 5
1.6 White Noise (WN) and Random Walk (RW) processes . . . . . . 6
1.7 Sources of non-stationarity . . . . . . . . . . . . . . . . . . . . . 6
1.8 Lag and difference operator . . . . . . . . . . . . . . . . . . . . . 6
1.9 Wold decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.10 Linear process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Properties of ARMA Models 9
2.1 Autoregressive moving-average (ARMA) model . . . . . . . . . . 9
2.1.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 MA(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 AR(∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Autoregressive (AR) model . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Moments of stable AR(p) process . . . . . . . . . . . . . . 11
2.3 Moving average (MA) model . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Moments of MA(q) process . . . . . . . . . . . . . . . . . 12
2.4 Extra notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12




1

,3 Estimation and Specification of ARMA Models 13
3.1 ARMA coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Maximum likelihood estimator (MLE) . . . . . . . . . . . . . . . 13
3.3 Multivariate normal likelihood of ARMA model . . . . . . . . . . 13
3.3.1 Variance-covariance matrix of AR(1) . . . . . . . . . . . . 14
3.4 Prediction error decomposition of ARMA likelihood . . . . . . . 14
3.4.1 Likelihood function of AR(1) . . . . . . . . . . . . . . . . 15
3.4.2 MLE of an AR(1) with NID(0, 1) innovations . . . . . . . 15
3.5 Least Squares Estimator (LSE) . . . . . . . . . . . . . . . . . . . 15
3.5.1 MLE and LSE properties . . . . . . . . . . . . . . . . . . 15
3.6 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Forecasting ARM A(p, q) processes . . . . . . . . . . . . . . . . . 16
3.7.1 Confidence interval for X̂T +h . . . . . . . . . . . . . . . . 17
3.7.2 Optimal forecast under quadratic loss . . . . . . . . . . . 17

4 Autoregressive distributed lag and error correction models 18
4.1 Various models of this course . . . . . . . . . . . . . . . . . . . . 18
4.1.1 Box-Jenkins approach to modeling time series . . . . . . . 18
4.1.2 Structural models . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 Statistical (reduced form) models . . . . . . . . . . . . . . 18
4.2 Autoregressive distributed lag model (ADL) . . . . . . . . . . . . 18
4.3 Long and short run multipliers . . . . . . . . . . . . . . . . . . . 19
4.4 Forecasting with ADL(1,1): triangular System . . . . . . . . . . 19
4.5 Impulse response function (IRF) . . . . . . . . . . . . . . . . . . 20
4.6 Error correction model (ECM) . . . . . . . . . . . . . . . . . . . 20

5 Spurious regression unit-roots 21
5.1 Spurious regression problem . . . . . . . . . . . . . . . . . . . . . 21
5.2 Dickey Fuller (DF) test . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.1 Augmented Dickey-Fuller (ADF) - AR(p) . . . . . . . . . 22
5.2.2 ADF General-to-specific (G2S) . . . . . . . . . . . . . . . 22
5.3 Extra notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Cointegration and Granger causality 24
6.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.1 Cointegration tests . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Modeling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2.1 Estimation based on ECM . . . . . . . . . . . . . . . . . . 26
6.2.2 Engle and Granger 2-step procedure . . . . . . . . . . . . 26
This document contains the contents of the lecture slides and notes. The expla-
nations are summarized. To understand the properties of the definitions, proofs,
and formulas, it is recommended to derive the formulas yourself.




2

, 0 Preparatory Notes
0.1 Mean
If X and Y are independent of each other.


E(XY ) = E(X)E(Y )

0.2 Law of Total Expectation
We can find the expected value of a variable X by considering all different
scenarios A under which X can occur.


E(X) = E(E(X | Y ))
= P (A1 )E(X | A1 ) + · · · + P (An )E(X | An )



0.3 Geometric series
P∞
A geometric series is a sum of the type i=0 ri = 1 + r + r2 + . . . .
• If r < 1, the series will converge to 1
1−r .

• If r = 1, the terms in the series will oscillate (positive-negative).
• If r > 1, the series will diverges (goes to infinity).

0.4 Notes
• The joint probability density function (joint pdf) is a function used to
characterize the probability distribution of a continuous random vector.
• The covariance is a measure of joint variability of two random variables.
It measures the directional relationship.




3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur charhoog. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €8,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

78140 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€8,99  3x  vendu
  • (0)
  Ajouter