Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS) €6,68   Ajouter au panier

Notes de cours

Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS)

1 vérifier
 93 vues  11 fois vendu
  • Cours
  • Établissement

Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS)

Aperçu 4 sur 52  pages

  • 13 octobre 2023
  • 52
  • 2023/2024
  • Notes de cours
  • Dimitris pavlopoulos
  • Toutes les classes

1  vérifier

review-writer-avatar

Par: benthesneeuw • 2 mois de cela

avatar-seller
Research Methods in Communication With this estimation we can also define the
Science residuals:
Lecture 1: Introduction and linear
regression
Example wages and education
The residuals show how bad our estimation
is!
• Y hat = what model says
• Y = what reality is
• B0/B1 hat = things that come out of
your model
• B0 is the point where the line
crosses the Y axis
Scatterplot, for seeing the relationship • B1 is the slope
between 2 continuous variables
Regression results




- Intercept is B0
- Dependent variable = wage
- B0 = 4.97 expected wage if educ =
0
Simple regression - B1 = 0.79 increase in wage if
education increases by 1 year
Our model (= approximation of reality) is:
Wage = 4.97 + .079 * educ
Significance – is the coefficient
We don’t observe B0, B1 nor Ei
statistically different from 0?
Instead we estimate them along with the
dependent variable: - B0: t = 9.305, p < 0.000 → it is!
- B1: t = 20.284, p < 0.000 → it is!

,Generally, the interpretations of b are On residuals
- B0 expected Y (Y hat) if X = 0 To answer that question we need to
- B1 change in Y hat if X increases understand better what residuals are
in 1 unit
We assume that they:
Standardized regression
- Have mean zero
We might actually want a standardizes - Are not related with X
regression. Why?
We’ll see that the behavior of their
- Sometimes X = 0 doesn’t make a variance is very important too!
lot of sense. E.g. age = 0
What are they conceptually?
- B1 depends on the units of X which
makes it difficult to interpret - The part of Y not explained by X;
how far is our prediction of Y from
How does the standardized regression
the real Y
works?
Example
- We replace Y and X with their
standardized (Z) versions
- Remember that:


- Zx and Zy have mean 0 and
standard deviation (sd) 1
We can write this regression as


What happens now?
- Since both variables have mean 0
→ B0 = 0
- Our new coefficient interpretation
is that if X increases by 1 unit sd, Regression line
then Y increases by B1 sd’s The sum of the residuals is expected to be
Regression line 0

There are many possible lines → which We define the regression line by making
one should we draw? Worded differently, ALL the residuals as low as possible!
which Bhat0 and Bhat1 ‘fit’ best our data? Should we reduce
We need to construct the line that best - Not really, remember that there are
approximates reality positive and negative residuals
- They might cancel out

,To avoid this issue we will square the sum: The TSS can be easily seen when we
predict Y only with its average
- It’s the sum of the square distance
- This is termed the Residual Sum of
in the plot!
Squares (RSS)
- Least Squares Method = Besides the totals, sometimes is useful to
minimizing the RSS seen the mean errors
Splitting the Sum of Squares - To do this we divide by the degrees
of freedom
The total variance of Y is…
Degrees of freedom = number of
independent pieces of information used to
- Practically: the ‘error’ you make calculate a statistic
when predicting Y with Yflathat
- Formally: how much variance of Y
is there to explain K = the number of independent variables
The variance of Y which CAN be N = sample
explained by X is…

= the mean squared total error
- Practically: what the regression
The square root of the
explains
is also referred as RMSE
The variance of Y which CANNOT be
explained by X is… - It’s one of the most common
measures of regression quality!
Coefficient of determination R-squared
- Practically: what the regression
does NOT explain R2 is the percentage (between 0 and 1) of
the total variance that is explained by the
regression…
How can we see these results?



So, the percentage of unexplained
RSS = 756.5755 SSE = 8451.138 TSS = variance is…
9207.713
We can also see the SSE in the ANOVA
table

, Residuals and regression quality Lecture 2: Multiple Regression
Keep in mind that we assumed linearity In multiple regression our interest is to
explain Y as a function of several
- The conditional means of Y are
independent variables
best shown in a line
- In other words: we assume that The new model can be written as


Back to the example: let’s explain wage by
What if I don’t have linearity (see plot with education and age
conditional means in red below)?
Causality
- MSE is not an appropriate measure
We are interested in the question: is there a
for assessing the regression quality
causal effect of X on Y?
Requirements for causality
- X and Y are associated
- X (independent) is realized earlier
than Y (dependent)
- We have excluded all other
alternative explanations of Y
Multiple regression aim
Keep in mind that…

As we will see assumption are very - Correlation does not imply
important in regression! causation
- The third requirement for causation
is the most difficult to fulfil
We use multiple regression because we
want to comply with the third requirement
We exclude alternative explanations by
controlling for several variable.
- However, it’s not that simple
We should think about controls in multiple
regression falling within three cases or
scenarios

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Evu8. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,68. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€6,68  11x  vendu
  • (1)
  Ajouter