Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Solutions for Essentials of Econometrics, 5th Edition by Damodar N. Gujarati €29,16   Ajouter au panier

Examen

Solutions for Essentials of Econometrics, 5th Edition by Damodar N. Gujarati

 114 vues  2 fois vendu
  • Cours
  • Economics
  • Établissement
  • Economics

Complete Solutions Manual for Essentials of Econometrics 5e 5th Edition by Damodar N. Gujarati. Full Chapters Solutions are included. Chapter 1 to 12 - Appendixes Solutions are included. Chapter 1. The Nature and Scope of Econometrics 1.1 What Is Econometrics? 1.2 Why Study Econometrics? ...

[Montrer plus]

Aperçu 4 sur 228  pages

  • 15 octobre 2023
  • 228
  • 2023/2024
  • Examen
  • Questions et réponses
  • Economics
  • Economics
avatar-seller
Solutions for Essentials of Econometrics 5e Gujarati

APPENDIX
A
REVIEW OF STATISTICS: PROBABILITY AND
PROBABILITY DISTRIBUTIONS

QUESTIONS
A.1. See Sections A.2, A.4, A.5, and A.6.
A.2. No. Notice that a pair of events, A and B, are mutually exclusive if they
cannot occur jointly, that is, P(AB) = 0. Independence, on the other hand,
means that P(AB) = P(A) P(B). Consider this example. Let A = the card is
a heart and B = the card is an ace. A card is drawn from a deck of 52 cards.
We know that P(A) = 1/4 and that P(B) = 1/13. The probability of the event
that a card is both a heart and an ace is P(AB) = 1/52 = P(A) P(B). Hence
the two events are independent. But they are not mutually exclusive
because the ace of hearts could be drawn.
A.3. (a) True, (b) True.
A.4. (a) Yes, they are also collectively exhaustive.
(b) (i) Events E1 and A2 occur together, (ii) events E3 or A3 occur,

(iii) E1 or A1 occur and similarly for the other three combinations;

(iv) events E2 A1 , E3 A2 , E4 A3 occur (Each pair occurs together).
Note that forecasts and actual events need not coincide. It is possible that
E1 was predicted, but the actual growth was A 4 and vice versa.
A.5. PDF relates to a continuous variable and PMF to a discrete variable.
A.6. The CDF of a discrete variable is a step function, whereas that of a
continuous variable is a continuous curve.
P(B| A)P( A)
A.7. Making the substitution, we obtain P( A|B) = . This is simply
P(B)
Bayes’ formula. If we think of A as a possible hypothesis about some
phenomenon, Bayes’ theorem shows how opinions about this hypothesis
held a priori should be modified in light of actual experience. In Bayesian


1

, language, P(A) is known as prior probability and P( A|B) is known as
posterior (or revised) probability.

PROBLEMS
4
A.8. (a) ∑x i −1
= x0 + x + x2 + x3 (Note: x0 = 1).
i =1

6 6
(b) ∑ ay i
= a ∑ y i = a(y 2 + y 3 + y 4 + y 5 + y 6 )
i =2 i =2

2 2 2
(c) ∑(2x i + 3y i ) = 2∑ x i + 3∑ y i = 2(x 1 + x 2 ) + 3(y1 + y 2 )
i =1 i =1 i =1

3 2
(d) ∑∑ x i
y i = x 1 y1 + x 2 y1 + x 3 y1 + x 1 y 2 + x 2 y 2 + x 3 y 2
i =1 j =1

4 4 4
(e) ∑ i + 4 = ∑ i +∑ 4 = (1 + 2 + 3 + 4) + (4)(4) = 26
i =1 i =1 i =1

3
(f) ∑3 i
= 3 + 32 + 33 = 39
i =1

10
(g) ∑ 2 = (2)(10) = 20
i =1

3 3 3
(h) ∑ (4x 2 − 3) = 4 ∑ x 2 − ∑ 3 = 4(12 + 2 2 + 32 ) − (3)(3) = 47
x =1 x =1 x =1



5
A.9. (a) ∑x i
( i from 1 to 5)
i =1

5
(b) ∑i x i
(i from 1 to 5)
i =1

k
(c) ∑(x 2
i
+ y i2 ) (i from 1 to k)
i =1




A.10. (a) [500 (500 + 1)] / 2 = 125,250
100 9
(b) ∑ k − ∑ k = [100 (101)] / 2 – [9 (10)] / 2 = 5,005
1 1




2

, 100
(c) 3∑ k = 3(5,005) = 15,015, using (b) above.
10

A.11. (a) [10 (11)(21)] / 6 = 385
20 9
20(21)(41) 9(10)(19)
(b) ∑ k2 − ∑ k2 = 6

6
= 2,585
1 1

19 10
19(20)(39) 10(11)(21)
(c) ∑k − ∑k 2 2
=
6

6
= 2,085
1 1

10
(d) 4 ∑ k 2 = 4(385) = 1,540, using (a) above.
1




A.12. (a) Since ∑ f(X ) = 1, (b + 2b + 3b + 4b + 5b) = 15b = 1. Therefore, we
have b = 1/15.
(b) P(X ≤ 2) = 6/15; P(X ≤ 3) = 10/15; P(2≤ X ≤ 3) = 4/15


A.13. (a) Marginal distributions:


X 1 2 3 Y 1 2 3 4
f(X) 0.20 0.40 0.40 f(Y) 0.15 0.10 0.45 0.30


(b) Conditional distributions:


f(X|Y) f(Y|X)
P(X = 1 | Y = 1) = 0..15 = 0.20 P(Y = 1 | X = 1) = 0..20 = 0.15
P(X = 2 | Y = 1) = 0..15 = 0.40 P(Y = 2 | X = 1) = 0..20 = 0.10
P(X = 3 | Y = 1) = 0..15 = 0.40 P(Y = 3 | X = 1) = 0..20 = 0.45
………. P(Y = 4 | X = 1) = 0..20 = 0.30
………. ……….


The remaining conditional distributions can be derived similarly.


A.14. Let B represent the event that a person reads the Wall Street Journal and let




3

, A1, A2, and A3 denote, respectively, the events a Democrat, a Republican,
and an Independent. We want to find out P(A2 |B) :

P(B| A2 )P(A2 )
P(A2 |B) =
P(B| A2 )P(A2 ) + P(B| A1 )P(A1 ) + P(B| A3 )P(A3 )

(0.6)(0.4)
= = 0.558
(0.6)(0.4) + (0.3)(0.5) + (0.4)(0.1)
Note that the prior probability of sampling a Republican is 0.4 or 40%. But
knowing that someone is found reading the Wall Street Journal, the
probability of sampling a Republican increases to 0.558 or 55.8%. This
makes sense, for it has been observed that proportionately more
Republicans than Democrats or Independents read the Journal. This
example is an illustration of Bayes’ Theorem.

A.15. This is P ( A + B ) or P(A ∪ B) = 0.9.


A.16. (a) No, for the probability that this happens is 0.2 and not zero.
(b) Let A denote having children and B denote work outside home. If these
two events are to be independent, we must have P(AB) = P(A) P(B). In the
present case, P(AB) = 0.2 and P(A) = 0.5 and P(B) = 0.6. Since in this case
P(AB) ≠ P(A) P(B), the two events are not independent.

A.17. From Table A-9, it can be seen that


X Below poverty Above poverty f(Y) 
Y
White 0.0546 0.6153 0.6699
Black 0.0315 0.0969 0.1284
Hispanic 0.0337 0.1228 0.1565
Asian 0.0046 0.0406 0.0452
f(X)  0.1244 0.8756 1.00




4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur StepsSol. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €29,16. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

72042 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€29,16  2x  vendu
  • (0)
  Ajouter