Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Cellular and Molecular Neuroscience - Part Ellender €7,69   Ajouter au panier

Resume

Summary Cellular and Molecular Neuroscience - Part Ellender

1 vérifier
 85 vues  6 fois vendu

In this summary (based on my own notes and PPT) you can find the chapters that are given by Prof. Ellender. Color code: -Purple= 1. -Dark pink = 1.1. -Light pink = 1.1.1. -Green= 1.1.1.1 - Blue= 1.1.1.1.1 Important abbreviations: - N = neuron - B= brain - !!! = important - NT = neu...

[Montrer plus]

Aperçu 3 sur 17  pages

  • 17 octobre 2023
  • 17
  • 2022/2023
  • Resume
Tous les documents sur ce sujet (2)

1  vérifier

review-writer-avatar

Par: katohavaux • 11 mois de cela

avatar-seller
evevlaemynck
DIVERSITY OF CELL CELLULAR & MOLECULAR NEUROSCIENCE (ELLENDER): & is dependent of the resistance
within the system
TYPES IN THE BRAIN INTRODUCTION & BASIC CONCEPTS → high R: little current
brain (B) → many cell types: → low R: high current

> astrocytes SPATIAL AND TEMPORAL THE MOSAIC MODEL OF THE RESTING MEMBRANE
> endothelial cells blood vessels SCALES OF MEASUREMENTS MEMBRANE = THE BASIS OF POTENTIAL
> schwann cells neuroscience doesn’t have a lot of BIO-ELECTRICITY
> microgliacells = macrophages brain N has a resting membrane potential
equipment to study B
> dendrocytes: help with myelin prod. > phospholipid bilayer impermeable for ions → Vm = Vin - Vout (always 0mv!!) =
→ 2 we will focus on: single unit recordings
> neurons (N) !!! → allow cells to have an intracellular = -100 mV for N
& patch clamp
= excitable cells -> generate action environment detected with glass electrode
→ detect electrophysiology
potentials (AP) !!!! → membrane = insulator between 2 salt
→ N connected with >1000 other N = studying rapid (msec) changes & solutions how many ions to created Vm?
= N circuit level: communication → functions as a capacitor: stores → C = Q/V
excitability of N on cellular & subcellular
via synapses charge → 10-12 mol/cm2 ions need to be
level
→ AP (electrical signal) here > in bilayer flow proteins = IC transferred to get -100 mV
converted to chemical IONIC BASIS OF > bilayer gives cell 2 !!! properties: (tot. number ions 1cm3 = 10-4
signal (neurotransmitters-NT) EXCITABILITY • conductance (g: pS) → only small amount of charge
→ NT comes free ~ post- • capacitance = storage of charge in needed to get a rest
brain function, muscle contraction &
synaptical R system potential)
heart rhythm
→ complex electrical phenomena explained →Q=CxV
big diversity: classification on bio- -> Q = charge: Coulomb, C ION DISTRIBUTIONS
by AP
chemical content (expression P or -> C = capacitance Farad, F ions unequal distributed across bilayer
markers) or AP (what is the pattern) = complex electrical phenomenon ex- -> V = voltage across capacitor, V → is due to Na/K-ATPase pump
plained by ion channels (IC) -> change V in bilayer?: initiation
how can N generate an AP? capacitance current = driving force for ions to flow through
→ ION CHANNELS MAKE N ION CHANNEL PROPERTIES -> N will respons slower + gives IC
EXCITABLE !!!! us a membrane time constant
I. SELECTIVITY: they gate ions (K+, Na+, Cl-) (rm= R x C) of 10-50ms
→ depending on [ion] in/out there will
STUDY OF N & THE
be a reverse potential RESISTANCE: OHM’S LAW
NERVOUS SYSTEM AT II. PERMEABILITY FOR IONS: can be V = I x R → Ohm’s law
DIFFERENT LEVELS selective permeable (closed from in -> -> I = current = V/R = g x V: pA
out, but open from out-> in) -> R = resistance: MΩ → Na+ & Cl- = more out cell
III. KINETICS: they have a probability
to be open can be bound to a NT or → K+ & A- = more in cell
be changed by voltage can calculate resistance over bilayer or if
→ there is a time course activation there’s change in voltage how much current will
& inactivation (we’ll see this later) flow through circuit
→ if you apply a potential  through system
there will flow a current through the circuit

, ION CHANNELS CONSEQUENCE OF model explains original observation
= transmembrane proteins that gate/ + predicts outcome new experiments
conduct/pass selective ions
A-SYMMETRIC -> yes? -> good model
→ open IC? CONCENTRATIONS & NERST -> no? -> poor model
→ membrane potential moves you can predict how N responds if you change !!!! no model is final: there will always be
towards equilibrium potential parameters in circuit new processes that requires you to
for that ion → Ix = gx (E,T) x (E - Ex) change model
→ current = conductance x driving force
= potential where no net flow → if you change voltage + conductance↑ ELECTRICAL UNITS &
of ion occurs across membrane
(there is a balance in and out)
more current will flow across bilayer FUNDAMENTAL CONSTANTS
via IC
→ set by 2 gradients:
> concentration gradient !!! to know IC are not passively open
= ions what an evenly & closing but they are depending on
distribution in and out voltage
> voltage gradient → certain IC are closed at particular
= electrical potential  voltages & other open (changing
across a distance configuration takes a while)
= voltage gated channels
ION PUMPS
Na/K-ATPase !!! role in uneven distribution biological voltage range = -90 to +60 mV
→ bind ATP: Na+ out & K+ in N -> -90 mV= reverse potential K+
→ with ATP it tries to keep -> +60 mV = reverse potential Na+
concentrations on either side of -> cell potential always between
membrane away from equilibrium these 2
potential CLASSICAL ION CHANNEL
→ this makes the N excitable &
makes AP propagation possible BIOPHYSICS
NERNST EQUATION
to calculate the equilibrium potential for
all ions & is based on [in] & [out] of cell
→ takes into account voltage &
concentration gradient
we try to generate models that can
predict/prescribe what we see in systems
→ need sufficient, relevant & reliable info
for right model (simple models preferred)

, NEURONAL MEMBRANE 1985-1995
RECORDING BIO-ELECTRICITY HISTORY
RESISTANCE (Rm) & cloning of IC genes
CAPACITANCE (Cm) KEY HISTORICAL ADVANCES IN → detailed studies possible
HODGKIN & HUXLEY
> resistance ELECTROPHYSIOLOGY: 1939: !!!! FIRST INTRACELLULAR AP
= ability for current to flow across McKINNON 1998
> Bernard 19th century: cells are bathed in RECORINDGS !!!
a membrane (possible bcs bilayer crystalized IC to see what happens
solutions that mimic the oerzee → caused a paradigm shift in understanding
is impermeable for ions) → he measured ions in oerzee when IC open/closes
AP generation
→𝑹= 𝑰
𝑽 → paradigm shift
→ different [in] & [out]: he thought → observed 2 things:
--> R = resistance -> Ohm that membrane potential = selective > resting membrane potential = - HODGKIN & HUXLEY MORE IN
--> depends on IC: close/open permeability for K+ > human AP has an overshoot: peak
> Nernst: developed Nernst equitation AP at +40mV & not 0mV
DETAIL
--> V = voltage -> voltage
--> I = current -> Ampere → rest membrane potential = negative → so Bernsteins hypothesis impaled N with electrode: inside more neg.
> capacitance → matched hypothesis from Bernard: = wrong: there must be something than outside
= ability of membrane to hold/store rest potential close to equilibrium else → Vm = Vin - Vout
charge (looks like a battery, but a potential K+ (-90mV) Kuhn cycle: → AP = tiny signal (mV) -> need high
battery slowly gives away his V, > Bernstein 1902: AP = non-specific breakdown a) scientist makes model to understand impedance amplifiers
while a capacitor gives it all away of K+ permeability (membrane just opens, so something
immediately) permeability↓) b) science progresses -> new observations HIGH IMPEDANCE
→𝑸 = 𝑪∙𝑽 -> model doesn’t fit anymore AMPLIFIERS
--> Q = charge stored -> Coulombs BERNSTEIN’S SUGGESTION c) model drifts away from what it originally
--> C = capacitance -> Farads was set up: fine tip (1µm) glass electrode
--> V = voltage I. [K+]in > [K+]out → it fails to explain reality filled with electrolyte salt solution
II. K+ permeability highest off = point of reality → then record Vm relative to extra-
LUIGI GALVANI: 1781 all ions d) model changed = model revolution cellular environment
III. Vm → change old -> new = paradigm shift → need high impedance amplifiers:
Galvani saw biological systems use = equilibrium potential K+
electricity to function has very resistance & can detect
IV. neuronal activity represents a short 1945-52: development voltage clamp very small potential differences
→ stimulated nerves with electricity circuit of the cell membrane (CM) → clamped voltage N & probed which ionic + doesn’t take current for N
→ muscle contraction resistance current is responsible for AP generation away
→ suggested that the short circuit → again paradigm shift → other amplifiers do this:
additional setup: dissected frog in vase would make N approach 0mV during modification potential
on table AP
→ he waited till lightning from storm NEHER-SAKMAN 1981 (used by HH)
→ hard to know: till 1939 AP were back in the days: triode tubes:
hit the antenna always recorded extracellular !!! development patch clamp !!!
electrons in tube move away
→ thought that animal would come → but then Hodgkin & Huxley → recording small currents (pA): now recording
from 2 wires (- & +) & flow
back alive single ion channel currents possible
electrons can be modified with
→ paradigm shift: understanding
wire mech
excitability bcs of IC↑ (how IC open/ → can now dial up/down signal input:
close) can change ion flux across bridge
→ amplification signal x fold

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur evevlaemynck. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,69. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67474 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,69  6x  vendu
  • (1)
  Ajouter