Hetgeen aan te tonen/te definiëren opschrijven: 0.5pt
Definieer met behulp van de kleinste bovengrens eigenschap van R de functie f : R>0 → R
√
door x → 4 x + 1 (Hierbij alleen gebruik makende van de axioma’s van de reele getallen uit
H2.2 en de lemma’s van H2.3).
Definieer x4 : 0.75 pt.
Voor alle x ∈ R definiëren we x4 als (x2 )2 = (x · x) · (x · x) volgens 2.3.1(2).
Definieer Tr : 0.75 pt.
Neem nu een vaste r ∈ R>0 . Dan kunnen we de verzameling Tr definiëren
Tr = {x ∈ R≥0 | x4 < r}.
Merk op dat Tr niet leeg is: 0.75 pt.
De verzameling Tr is niet leeg aangezien 04 = (0 · 0) · (0 · 0) = 0 · 0 = 0 (Lemma 2.3.2(7)) en
0 < r (per definitie van r).
Laat zien dat Tr een bovengrens heeft (dit kan op meerdere manieren): 5 pt.
Laat x ∈ R met r + 1 < x.
Volgens de definitie van r geldt dat 0 < r en uit 2.2.1(l) dat 1 < r + 1 en dan geeft 2.3.3(2)
dat 1 < x maar ook 0 < r + 1, verder met 0 < 1 geeft 2.3.3(2) ook dat 0 < x.
Aangezien 0 ≤ (r + 1) < x geeft 2.3.3(11) dat (1 + r) · (1 + r) < x · x oftewel (1 + r)2 < x2 .
2.3.3(7) (met 1 + r ̸= 0) geeft dat 0 < (1 + r)2 dus er geldt weer 0 ≤ (1 + r)2 < x2 nogmaals
2.3.3(11) geeft dan (1 + r)2 · (1 + r)2 < x2 · x2 , dit is volgens onze definitie (met 2.3.1(2))
hetzelfde als (1 + r)2 · (1 + r)2 < x4 .
Er geldt 0 ≤ r < r + 1 en 0 ≤ 1 < r + 1, dus geeft 2.3.3(11) dat r · 1 < (r + 1) · (r + 1)
en met 2.2.1(g) dat r < (r + 1) · (r + 1) dus r < (r + 1)2 (2.3.1(2)). Op dezelfde manier
met 0 ≤ 1 < r + 1 geeft 2.3.3(11) dat 1 · 1 < (r + 1) · (r + 1) en met 2.2.1(g) weer dat
1
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur marjavdwind. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €5,49. Vous n'êtes lié à rien après votre achat.