Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Week 2. Moderation, mediation & statistical significance - KNOWLEDGE CLIP, LECTURE, WORKGROUP + LITERATURE SUMMARIES €5,99   Ajouter au panier

Resume

Summary Week 2. Moderation, mediation & statistical significance - KNOWLEDGE CLIP, LECTURE, WORKGROUP + LITERATURE SUMMARIES

 24 vues  4 fois vendu
  • Cours
  • Établissement

This document contains my notes of the knowledge clip, my notes of the lecture, my notes of my workgroup meeting & summaries of the mandatory (and 2 extra) literature.

Aperçu 4 sur 34  pages

  • 26 novembre 2023
  • 34
  • 2023/2024
  • Resume
avatar-seller
2023-2024, Block 1 GW4003MV. Advanced Research Methods


WEEK 2
Are you certain?
Moderation, mediation, and statistical
significance

Inhoud
Knowledge clip..................................................................................................................................................2
Knowledge clip 2: OLS regression.............................................................................................................2
Lecture 2 (8 sept)..............................................................................................................................................4
Part 1. OLS and moderation..........................................................................................................................4
Part 2. Mediation..........................................................................................................................................8
Part 3. Statistical significance......................................................................................................................12
Part 4. Beyond p < 0.05...............................................................................................................................14
Workgroup meeting (12 sept).........................................................................................................................17
Homework assignment...............................................................................................................................17
Research case 1: Corrector therapy for infants with Malycosis...............................................................17
Research case 2: Interpreting study results using OLS regression...........................................................22
Literature........................................................................................................................................................29
Wheelan: Chapter 9: Inference...............................................................................................................30
Wheelan: Chapter 11: Regression Analysis.............................................................................................32
Wheelan: Chapter 12: Common Regression Mistakes............................................................................32
Kennedy-Shaffer (2019). Before p < 0.05 to Beyond p < 0.05: Using history to contextualize p-values and
significance testing..................................................................................................................................32
Greenland, et al. (2016). Statistical tests, P-values, confidence intervals, and power: a guide to
misinterpretations..................................................................................................................................32
Wasserstein (2019). Moving to a world beyond “p < 0.05.”....................................................................32
EXTRA LITERATURE: Nuzzo (2014). Scientific Method: Statistical errors.................................................33
EXTRA LITERATURE: Cole, Hernan (2002). Fallibility in estimating direct effects.....................................33




1

,2023-2024, Block 1 GW4003MV. Advanced Research Methods



Knowledge clip
Knowledge clip 2:OLS regression
OLS = Ordinary Least Squares




There are many types of regressions. The 2 types most commonly used are: OLS/linear and logistic
regression. Which regression type you should use, depends on the outcome variable (Y) of interest:
 OLS regression  Y = continuous.
 Logistic regression  Y = dichotomous.

Continuous variables can take any value within a
certain range. E.g. age, BMI.

Dichotomous variables only have 2 potential
(often binary) outcomes. E.g. insured/uninsured,
admitted to hospital (yes/no).



 Example: RQ: What is the effect of height on weight?




The regression equation describes the relationship
between the exposure variable (X) and the outcome
variable (Y).

The beta coefficients are estimated averages and are
always expressed on the same scale as the outcome (Y).




Running an OLS regression means that we are fitting a
linear curve that is as close to the observation points as
possible.




The name ‘Ordinary Least Squares’ is attributed to the foundation of principle of minimizing the sum of the
squared differences between the fitted/predicted and the observed values. We calculate the squared


2

,2023-2024, Block 1 GW4003MV. Advanced Research Methods


differences because some differences are positive and some are negative, and by calculating the squared
difference you cancel that out.

The intercept/constant (B0) describes
the value of Y at X=0 (in theory ofcourse,
because in practice this is almost
impossible).

Coefficient (B1) describes the slope; this
represent the average increase in weight
with every increase in height.




The difference between the estimated
value by calculating (via the regression
equation) and the observed value is called
the ‘error term’ (ε). The smaller the error
term, the better the estimate.

Coefficients of an OLS regression have
multiple meanings: not only positive and
negative, but also the average size of the
effect.

Usually there are more variables. Look at this example:




3

, 2023-2024, Block 1 GW4003MV. Advanced Research Methods



Lecture 2 (8 sept)
Part 1. OLS and moderation




Slide 3 – 6. Recap week 1
We use DAGs to meet the conditions
(positivity, consistency and exchangeability),
especially for the exchangeability condition
via adjustment in the regression analysis.




Slide 8 + 9
The type of regression analysis you
use is dependent on the outcome
variable. If you have a continuous
variable as outcome, you will use an
OLS regression analysis.

Adjustment in regression analysis
always means: include one or more
confounders (and/or intermediate
variables on causal paths) in
regression analysis at the same time.
So adjustment = including.

There are many terms used for this:
adjustment, controlling, correcting,
accounting, factoring in, …

Slide 10
However, the software doesn’t tell
you how to interpret the results.
DAGs help you with the
interpretation.
4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur dsmeets123. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €5,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

84669 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€5,99  4x  vendu
  • (0)
  Ajouter