Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
FULL SUMMARY Computational Analysis of Digital Communication €8,49   Ajouter au panier

Resume

FULL SUMMARY Computational Analysis of Digital Communication

 45 vues  7 fois vendu
  • Cours
  • Établissement

Summary made for CADC at the VU in Amsterdam. Made in 2023/2024. From the 40 multiple choice questions, I had 3 incorrect.

Aperçu 6 sur 83  pages

  • 2 décembre 2023
  • 83
  • 2023/2024
  • Resume
avatar-seller
LECTURE 1

,MUCH OF WHAT WE KNOW ABOUT HUMAN BEHAVIOR
• In self-report measures in surveys
• In responses in experimental research
• In qualitative interviews.

WHAT IS COMPUTATIONAL ANALYSIS?

Example: Surprising sources of information

• In 2009, researchers wanted to study wealth and poverty in Rwanda
• They conducted a survey with a random sample of 1,000 customers of the largest mobile phone
provider
• They collected demographics, social, and economic characteristics (incl. wealth)
• So far, traditional social science, right?
• The authors also had access to complete call records from 1.5 million people
• Combining both data sources, they used the survey data to “train” a machine learning model to
predict a person’s wealth based on their call records
• They also estimated the places of residence based on the geographic information embedded in call
records

COMPUTATIONAL SOCIAL SCIENCE
• Field of social science that uses algorithmic tools and large/unstructured data to understand human
and social behavior.
• Complements rather than replaces traditional methodologies: Methods are not the goal but
contribute to data generation.
• Includes methods such as, e.g.,:
▪ Data mining (e.g., scraping and gathering of large data sets)
▪ Software development for social science experiments
▪ Automated text analysis (e.g., sentiment analysis, keyword extraction, dictionary approaches)
▪ Image classification (e.g., face recognition, visual topic modeling)
▪ Machine learning approaches (e.g., for classification, prediction, topic modeling)

, ▪ Actor-based modeling (e.g., simulation of social behavior, spreading of information)

Why is this important now?

• Vast amounts of digitally available data, ranging from social media messages and other digital traces
to web archives and newly digitized newspaper and other historical archives
• Large-scale records (big data) of persons or businesses are created constantly
• Powerful and comparatively cheap processing power, and easy to use computing infrastructure for
processing these data
• Improved tools to analyze this data, including network analysis methods and automatic text analysis
methods such as supervised text classification, topic modeling, word embeddings, as well as large
language models


10 CHARACTERISTICS OF BIG DATA

,PRO’S AND CON’S OF COMPUTATIONAL METHODS

Opportunities

• We can study actual behavior instead of simply self-reports.
• We can study human beings in their social context instead of in an artificial lab setting.
• We can increase our N (higher power).
• Potential to uncover patterns and insights that we couldn’t investigate before.

Pitfalls

• Techniques often (rather) complicated.
• Data is often proprietary (not shared openly).
• Samples are often biased (=vertekend).
• Often, data have only insufficient metadata.

Definition:

Computational communication science is the merging subfield that investigates the use of computational
algorithms to gather and analyze big and often semi- or unstructured data sets to develop and test
communication science theories.

TYPICAL RESEARCH AREAS

Computational communication science studies thus usually involve:

1. large and complex data set
2. consisting of digital traces and other “naturally occurring” data
3. requiring algorithmic solutions to analyze
4. allowing the study of human communication by applying and testing communication theory
• Political Communication
▪ Democratization and Polarization
▪ Hate Speech
• Social Media Use
▪ Tracking of actual social media use
▪ Spreading of behavior, information, or emotions
• Health Communication
o Prevalence of health information online
• (Online) Journalism
▪ News coverage across decaces
▪ Gender equality



EXAMPLE 1: ANALYZING NEWS COVERAGE
• Jacobi and colleagues (2016) analyzed the coverage of nuclear technology from 1945 to 2014 in the
New York Times
• Analysis of 51,528 news stories (headline and lead): Way too much for human coding!
• Used “LDA topic modeling” to extract latent topics and analyzed their occurrence over time

,EXAMPLE 2: FACEBOOK DATA TO PREDIT PERSONALITY
• Kosinski and colleagues (2013) used a dataset of over 58,000 volunteers who provided their Facebook
Likes, detailed demographic profiles, and the results of several psychometric test
• Were able to show that one can predict a variety of personal characteristics and personality traits
from simple Facebook likes




EXAMPLE 3: DUTCH TELEGRAMSPHERE



• Simon et al. (2022) collected the full messaging history (N = 2,033,661) of 174 Dutch-language public
Telegram chats/channels
• Used state-of-the-art web-mining, neural topic modeling, and social network analysis techniques.
• Their findings raise concerns with respect to Telegram’s polarization and radicalization capacity.
• They observed that Telegram users are active in and share content across different communities.

, • They further found that over time, conspiracy-themed, far-right activist, and COVID-19-sceptical
communities dominated




EXAMPLE 4: GENDER STEREOTYPES IN POLITICAL NEWS



• Andrich et al (2023) studied gender differences in political news coverage to determine whether the
media employ stereotypical traits in portrayals of 1,095 U.S. politicians
• The sample consisted of over 5 million U.S. news stories published from 2010 to 2020

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur irisvandenheuvel3. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €8,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€8,49  7x  vendu
  • (0)
  Ajouter