Hoofdstuk 22: De Wet van Gauss
Elektrische flux 𝚽𝑬 door een plat oppervlak 𝐴 voor een homogeen elektrisch veld
𝐸⃗ is gedefinieerd als Φ𝐸 = 𝐸⃗ ∙ 𝐴 = 𝐸𝐴𝑐𝑜𝑠𝜃 en is proportioneel met het aantal
veldlijnen door het oppervlak 𝐴.
Als het veld niet homogeen is, kan de flux worden
bepaald met behulp van de integraal Φ𝐸 = ∫ 𝐸⃗ ∙ 𝑑𝐴.
De richting v/d vector 𝐴 of 𝑑𝐴 wordt loodrecht op het
oppervlak met de oppervlakte 𝐴 of 𝑑𝐴 gekozen en is naar
buiten gericht op een gesloten oppervlak.
Wet van Gauss = De netto flux door een willekeurig gesloten oppervlak is gelijk
aan de netto lading 𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 die wordt omsloten door het oppervlak, gedeeld
𝑄
door 𝜀0 . → ∮ 𝐸⃗ ∙ 𝑑𝐴 = 𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 .
𝜀0
De wet van Gauss kan in principe worden gebruikt om het elektrisch veld als
gevolg v/e bepaalde ladingverdeling te berekenen, maar de bruikbaarheid is
voornamelijk beperkt tot een klein aantal gevallen, waarin de ladingverdeling
een zeker vorm van symmetrie vertoont. Het werkelijke belang v/d wet van
Gauss is dat deze een meer algemene en elegantere formulering is (dan de wet
van Coulomb) voor de relatie tussen elektrische lading en elektrisch veld. Het is
een basisvergelijking voor elektromagnetisme.
Opbouw v/d wet van Coulomb a.d.h.v. de wet van Gauss voor een puntlading:
- Beschouw een geïsoleerde puntlading 𝑄. Als gaussisch oppervlak kiezen we
een imaginaire bol met straal 𝑟, waarvan het middelpunt zich ter plaatse
v/d lading bevindt. Omdat de wet van Gauss geldig wordt verondersteld
voor elk willekeurig oppervlak, hebben we een oppervlak gekozen dat onze
berekening vereenvoudigt. Vanwege de symmetrie van
deze (imaginaire) bol om de lading in het middelpunt
ervan, weten we dat 𝐸⃗ dezelfde grootte moet hebben in elk
willekeurig punt v/h oppervlak en dat 𝐸⃗ radiaal naar
buiten (of naar binnen) is gericht, evenwijdig aan 𝑑𝐴, een
oppervlakte-element v/d bol. We kunnen de integraal in de
wet van Gauss dus schrijven als:
∮ 𝐸⃗ ∙ 𝑑𝐴 = ∮ 𝐸 𝑑𝐴 = 𝐸 ∮ 𝑑𝐴 = 𝐸(4𝜋𝑟 2 )
omdat 𝐸⃗ en 𝑑𝐴 beiden loodrecht op het oppervlak staan in elk punt v/h
oppervlak en omdat 𝑐𝑜𝑠𝜃 gelijk is aan 1. Bovendien is de grootte van 𝐸⃗
gelijk in alle punten van dit bolvormige oppervlak en is de oppervlakte v/e
bol met straal 𝑟 gelijk aan 4𝜋𝑟 2 .
- Doordat 𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 gelijk is aan 𝑄, wordt de wet van Gauss:
𝑄
= ∮ 𝐸⃗ ∙ 𝑑𝐴 = 𝐸(4𝜋𝑟 2 ).
𝜀0
1
, - Dat betekent dat 𝐸 gelijk is aan:
𝑄
𝐸= ,
4𝜋𝜀0 𝑟 2
wat overeenkomt met de versie v/h elektrisch veld volgens de wet van
Coulomb.
Opbouw v/d wet van Gauss a.d.h.v. de wet van Coulomb voor een puntlading in
een boloppervlak:
- Veronderstel 1 enkele puntlading 𝑄, omgeven door een imaginair,
bolvormig oppervlak. De wet van Coulomb vertelt ons dat het elektrisch
𝑄
veld op een bolvormig oppervlak gelijk is aan 𝐸 = 4𝜋𝜀 𝑟2 . Als we het
0
argument dat we zojuist gebruikten omkeren krijgen we dat:
𝑄 𝑄 𝑄
∮ 𝐸⃗ ∙ 𝑑𝐴 = ∮ 𝑑𝐴 = (4π𝑟 2)
=
4𝜋𝜀0 𝑟 2 4𝜋𝜀0 𝑟 2 𝜀0
𝑄
⇒ ∮ 𝐸⃗ ∙ 𝑑𝐴 = ,
𝜀0
wat de wet van Gauss is voor 𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 = 𝑄, afgeleid voor het speciale
geval v/e bolvormig oppervlak dat een puntlading ter plaatse v/h
middelpunt ervan omsluit.
Opbouw v/d wet van Gauss a.d.h.v. de wet van Coulomb voor een puntlading in
een boloppervlak:
- Beschouw een onregelmatig gevormd oppervlak 𝐴2 .
Door dit oppervlak gaat hetzelfde aantal veldlijnen
(als gevolg van lading 𝑄) als door het bolvormige
oppervlak 𝐴1 . Omdat de flux door een oppervlak
recht evenredig is met het aantal veldlijnen dat
erdoor gaat, is de flux door 𝐴2 gelijk aan die door 𝐴1 :
𝑄
∮ 𝐸⃗ ∙ 𝑑𝐴 = ∮ 𝐸⃗ ∙ 𝑑𝐴 = .
𝐴2 𝐴1 𝜀0
- Hieruit kan men afleiden dat voor elk willekeurig oppervlak dat 1
puntlading omsluit het volgende geldt:
𝑄
∮ 𝐸⃗ ∙ 𝑑𝐴 = .
𝜀0
- Wanneer er meerdere ladingen aanwezig zijn, hebben we dat voor elke
lading 𝑄𝑖 , omsloten door het gekozen oppervlak, geldt:
𝑄𝑖
∮ 𝐸⃗𝑖 ∙ 𝑑𝐴 = ,
𝜀0
waarin 𝐸𝑖 betrekking heeft op het elektrisch veld dat wordt geproduceerd
⃗
door de betreffende 𝑄𝑖 .
2
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur vastgoedstudent123. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €4,48. Vous n'êtes lié à rien après votre achat.