Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

2024 Machine Learning Notes Highlights(full))

Vendu
2
Pages
81
Publié le
08-02-2024
Écrit en
2023/2024

I achieved a score of 18 out of 20, the greatest distinction, in the 'Machine Learning' course in 2024. This success is attributed to the systematic study material I authored on my own. It includes chapter highlights, detailed explanations of key concepts, and, most significantly, clarifications on similar and ambiguous study points, with a meticulously made navagation pane. This comprehensive guide spans 81 pages and is available for the modest price of 9.9 euros, less than one lunch meal.

Montrer plus Lire moins











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
8 février 2024
Nombre de pages
81
Écrit en
2023/2024
Type
Notes de cours
Professeur(s)
David martens
Contient
Toutes les classes

Sujets

Aperçu du contenu

10.3 Lec2 CRISP-framework
Significant point of this Lec (SP):
• The difference between explanatory modeling and predictive modeling; pg4-19
1. Different goal
2. Different evaluation
3. Different modeling paths
• [NB]Data preprocessing:
1. its motivation or reason: why we should do it; pg21
2. what should we do and how (sampling, encoding, missing values,
outliers, normalizing…) ;pg22-46
• The difference between types of variables

Highlight:
• Slides: pg4-19, pg 21, pg 22-46
• Books:

Info:
11.15 visit AXA, register first; ?? TBC project upload; 12.12 ceremony competition



1 The difference between Exp vs Pre modeling
Goals!DEFINITION"
• Explanatory modeling: Theory-based, statistical testing of causal hypothesis
• Predictive modeling: Data science methods to make predictions
Evaluation
• Explanatory modeling: Strength of relationship in statistical model




1

, • Predictive modeling: Ability to accurately predict new observations




Modeling path: (17:00--)
• Data collection\ data preparation\data partitioning (important! Next week)
1. Data collection, similar
2. Data preparation, facing data missing—explanatory modeling can throw it
away; but for predictive modeling, it’ll be a problem.
3. Data partitioning, not important for explanatory but super important for
predictive modeling. (more info:
https://www.cockroachlabs.com/blog/what-is-data-partitioning-and-
how-to-do-it-right/)
• About the choice of variables:
1. for explanatory modeling, operationalized variables serve as practical
instruments for investigating the underlying conceptual constructs and
the relationships between them. For example, a questionnaire designed
to assess a person's level of depression (the construct) by asking about
their feelings and behaviors is a practical instrument. The term is used
often in the social sciences because scientists in that field have to spend
so much time creating and validating their constructs of interest, just to
be able to measure for them.)
2. for predictive modeling, the variables can be way broad, hundreds to
thousands, of course those should be available at first.
Notable words:
collaborative filtering models



2

, Definition: Collaborative filtering filters information by using the
interactions and data collected by the system from other users. It’s
based on the idea that people who agreed in their evaluation of certain
items are likely to agree again in the future. The algorithm supports
recommended system, for example, Taobao , amazon, netflix #$%
&'


Other differences:

• Explaining does not necessarily lead to predictions: variables nor present.
• Multicollinearity is a problem in explanatory model but not usually in predictive
modeling. Multicollinearity will not affect the ability of the model to predict. (A
websites clearify this: https://hackernoon.com/multicollinearity-and-its-
importance-in-machine-learning)
• Method:
1. explanatory—interpretable statistical method;
2. predictive—accurate machine learning method.
• Validation:
1. Model fit and R2. R2 is a measure of the goodness of fit of a model.[11] In
regression, the R2 coefficient of determination is a statistical measure of how
well the regression predictions approximate the real data points. An R2 of 1
indicates that the regression predictions perfectly fit the data.
2. Generalisation and accuracy.
• Y=f(X), to explain, test a given f; to predict, find f.




3

, 2 Data preprocessing
• Motivation and reason: dirty and noisy data, inconsistent data, incomplete data…
1-Data preprocessing. Sampling:
1. Definition: Select a suitable or representative sample to determine the
parameters and characteristics of the whole population.
2. Reason: economic, time, large and partly accessible population, computation
power.
3. How to do sampling and things to avoid: stratified sampling ()*+,
timing!many data vs recent/relevant data",avoid seasonality
effects(sales during summer and winter).
2-Data preprocessing. Encoding:
1. Encoding is the process of converting categorical data into a numerical
format that machine learning algorithms can understand.
2. Encoding vs Normalizing




4
€9,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
thaboty
1,0
(3)

Document également disponible en groupe

Thumbnail
Package deal
2023- 2024 Machine Learning& Data Ethics
-
2 2 2024
€ 14,98 Plus d'infos

Reviews from verified buyers

Affichage de tous les 2 avis
11 mois de cela

1 année de cela

1,0

2 revues

5
0
4
0
3
0
2
0
1
2
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
thaboty Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
5
Membre depuis
1 année
Nombre de followers
2
Documents
5
Dernière vente
11 mois de cela

1,0

3 revues

5
0
4
0
3
0
2
0
1
3

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions