Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Term 2 Lecture notes EC226 Econometrics Mastering 'Metrics - Score a first too €15,30   Ajouter au panier

Notes de cours

Term 2 Lecture notes EC226 Econometrics Mastering 'Metrics - Score a first too

 16 vues  0 fois vendu
  • Cours
  • Établissement
  • Book

Pass your exams with a first!!! Providing an in-depth and comprehensive review of the EC226: Econometrics course from Warwick Economics. The revision notes were written by a student who scored a solid first in the module and final exams. Revision notes include content from all the weeks from term 2...

[Montrer plus]

Aperçu 2 sur 12  pages

  • 2 mars 2024
  • 12
  • 2023/2024
  • Notes de cours
  • Jeremy smith
  • Toutes les classes
  • Inconnu
avatar-seller
Wat Serial Correlation
Distribution
of Coefficient in
Dynamic Time Series Models .
(vs) I :




Estimation of time sevel serial condation
of form of linear dependence
:
Presence over
Ols model of Yo
some




Recap T, - time
for some series
, zz

The autocorrelation Pictoral representation of which
this lineor
dependency, is
:


Function (ACF)
of C againstj) form of
I plots values
measured in the a correlation between Ez and Exx




Moving
to
T S .




for different 12 .




correlation
model
1) O
zen I Vk
--

cor(zz
(2
Co
that is : cor r za
=
Et , -
n
-


li I

-



O
-
-


+, -




v(zz)V(te -

k
I v(zi) -
y




It Bo B YE1 from lag of f=1 191 ju
-
+ +
Ef aise dependent variable where and l
=
, issues ·
, .




,




(i)
E(Et/yt 1) = 0 =
t(dely y ,
,
. .




+
ye 1 ,
ye
...

y 0
ez ,
2
+ n =
-o as h get
bigger ; fo =
)(z +, 7) :









&
!
strict
enogeneity is
r possible
Consider A&F in P
if
types Models :




4
(V(((y 1) +
=
0 t 1) White Noise
Ptypes of Model

MA ARMA
Autoregresive (AR) AR ;
Wil Cor (Ez , Es (y) = 0 Ets
:
;

roite
/0 04 (MA)
White
proce
(iv) Et 14 + 3)
Honing Average
-
N

large
,




d
enogeneity
las we
4) Autoregrenie Moving average
(ARMA) .




Samlim
* ~
- As
enogeneity
·
strict isn't possible -o
we replace (i) / :
Autocorrelation Function & White Noise Process (vi)
Ii) assumption of temporaneom enogeneity : [(dily , Yo , Ys .
. . .




.y .)
) =0 White Noise Process :



in words -
expectation of er ror

term is unconditional/unrelated on all value
of Y that happened up model :
Ex
=

Ex
-
(E) = 0 ↳
(4 k ,
= 0 to
until the previous va l u e ·




VIEl :
83 EWN(0 04 ,




station see



Straitlas umption o wedevel
vie


if ze E
-
E(zy E(4y) 0 constant
·


= = =
Mear
all

-
came for
↳adchen E(zz) Elke
-
z+ M+ 4 M+
= =




Mean


② v(y)) 5y V(z) = constant
->
+ t nuance
·
= -




③ (yt ytn) Un ((z 2)
>
-
ou
,
=
,
= 0 to
4 *
whet rol voe
previous
.

some




>
-
graph indicates :
if the Mocen in
"shocked" today ,
100 % of the


(W NI shoch remains
today but in a l l
future perod
WEAA
-




-ACF
. ,




DEPENDENCY .
There is to the shoch whatsoever -




no
memory

condition :
Corlyt Yen) Un - 0 =
as h get bigges

,







Lov
we
between
t a ke Gobs
observations
.
must
get smaller
,
the further it on

Each , dissipated
immediately is
- rent food .




creater similar condition to
sampling
a random
.

(1) Find Mat : 1 , N (p V (b , 1)
older 1 Model in which
cr of proces was
determined
by for.
val u e of
-of
,

: He
-



.
process



E AR (1) Model (vi) i
I'll
Hypother's Austing should also not i nv i l l e fitats ,
but the Xtat .




an add assumpt ou
·




the
-(i
ou
v(Ge & Could i e


*
ill
small a re


fol
a


PEz1
ols is bione
coefficien long is
large Et
conditions
of as the +
·
a re as
sanes him .




>
-
for I t to be stationor .




where it in a WN
process an d 10/11 (and have process in
stationary) -




Notes.
p
=

0 - Le derivation in Lecture


Note :
useful for proofs in to know it is a
purely random pocen & mated to all
including
past value of Ez

, continued
.




III
- -




Diagrammatically
-




·

p ,
10 ,
Gro

Diag i to



# Torammatical
goin decay zuo
9 0 20
·


. ·
, ,



f ·

if the proces is shocked today ,
100 % of the short is remembered

today
,
at period I
, of is remembered
,
ther
for every find pl ·
4. + & = complex roots
.

3
for
= 1 2 s
j , , ....,




O
Lautoregrenine
parameter
& o

back
low sucoil you agent shocked
①reces been GENERALIZATION AR(3) :


path Given joule
2 :



E to es.

of the path
.




out


= 47 ,
+
Pret +
-3 +
Et



& o
process

autoregressive parameter/coefficient .

ARP - E =

4, e + -2 +... +
Ptp + -C.N
27




Defining the
lag operator 1 ,
s .
A (z =
E -,
and 1'z ,
=
zej we
in this c a re -y
talked written as :




can write th Model as : VIze =
Vo =
Divi+ UntPatz . . .

&POP Note-Make sure

what each
to understand

of the

letters
V .
=
4 , 80
+
Prk +
&K +... +
PUP-1
Mear




=
=

P(Ez +
Ex
=
12 (l PH) -
= 4
+
=
ze =
I- PLT'Et 82 0, 8 =

.
+
aro +
934 +... +
%000-m


(PL)" &L P2
+
PL+ in which
. . .




Now : =
1 + + case :
...,




024 03 )Et E 94 + En P E 928j2 + Pojp ja Pt
°
+ + =
+ + +
Vi
=
&Vie + . .

>
+ ...
- - .




-




this in a MAIO)

be solved back substitution or in the first part Yule-walker MOVING MALI) MA(L) MALG)
by MODELS
can like AVERAGE ,
:

, ,

EQ
. weighted a r.
of new. random shocks
.
(4) =
0


MA(1) "E+=
G 08 Et
-
this
&
+
,
in case :
v(Et) =




cor(42 4) 0
jf0
=




Auto Regressive (AR2) ; AR(3) ; AR(p) Models Ot(4+ ) + E(at)
,


2 -


(E(7t
=
E(04 + ,
+ Ex) =

,
=
0/


(V(zd) =
Vo
=
(1 + 8462
Ex in
stationary
-
18 ,
+
02/
ARLI -
zz =
P ,
z
+ + $277- +
Et (((zt =zi) ,
=
y
=
062


WiN is to be (4) (zz 2) 0
and the assumed
stationary Lov d
in zt
=
where
Et
=
a
proces process ,




%
E(e) E(zz j) V(ze V(zz j) deine
AY
ht to
yield = /184 44 Lives O
=
equations : So =

f
=
;
=
so and = :
e =
,
-




E
E(z) (1 4, q)t(t)
=
- =
0
joll
V (z) d =
.
=


difl Pek + s Wote : the MA(1) can be written as an
infinite AR frocess to knows as
atibility
i



Ywell
Cor ( +) ,
=
0 .
=

06 +
Put
.




Co(z + K Pik ,
z = =

Pik MA(2) >
-
En
= 0 4 , .,
+
02 & 2
+ Ex
,




((zz ,
7 z- 3)
=

Us
=


Pik +
P28 simlor
yules-walked equation -




Diagrammatically :



Scen
By for
3

Puls the shoch
on

P6 (1) 2
-
extension MA(z) remembers
periods
- =

i
-




.
.
. >
- MA : When shocked remembers
the shock for I period
. MA(4) remembers shorth for q peroch length of M .
Al -




/ +0
3-Wf =
Ivonance .
-C- Piet Pulju joz
.

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur joebloggs123. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €15,30. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€15,30
  • (0)
  Ajouter