Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary test 2 Research Methodology and Descriptive Statistics - Premaster Business Administration - University of Twente €7,79   Ajouter au panier

Resume

Summary test 2 Research Methodology and Descriptive Statistics - Premaster Business Administration - University of Twente

1 vérifier
 104 vues  15 fois vendu
  • Cours
  • Établissement
  • Book

In this summary you can find the micro lectures of this course. It is supplemented with parts from the book of Earl Babbie. This summary is about unit 12-22 & 24.

Aperçu 3 sur 22  pages

  • Non
  • Chapter 2, 4, 7, 8, 14, 15, 16
  • 4 mars 2024
  • 22
  • 2022/2023
  • Resume

1  vérifier

review-writer-avatar

Par: marthuub • 6 mois de cela

avatar-seller
UNIT 13 – Visualizing and analyzing bivariate relationships – Babbie Ch. 14 pp. 429-433
Visualizing univariate data:
VISUALIZING UNIVARIATE DATA
Bar chart Pie chart




Histogram


Box-plot



Bivariate analysis: the analysis of two variables simultaneously, for the purpose of
determining the empirical relationship between them. The construction of a simple
percentage table or the computation of a simple correlation coefficient are examples of
bivariate analysis.
Visualizing bivariate relationships:




Assignment Unit 13 , Q7: Describe the linear relationship (sign and strength)
Scatterplot – quantitative variables

1.1. Strong positive linear relation
Strong positive linear relation
2. Strong positive linear relation
2. Strong positive linear relation
3. No relation
3. No relation


4.4. Moderate
Moderate negative
negative linear relation
linear
5. relation
Non-linear relation (curvilinear)
6.5. Non-linear
No relation
relation (curvilinear)
6. No relation


Interpretation of a correlation coefficient (Pearson’s R)




1

, Interpretation of a correlation coefficient (Pearson’s r)




Contingency tables display the relationship between two variables (ordinal or nominal
variables)
- A format for presenting the relationships among variables as percentage distributions;
typically used to reveal the effects of the independent variable on the dependent
variable.
𝑐𝑒𝑙𝑙
- Column percentages = ∗ 100%
𝑡𝑜𝑡𝑎𝑙 (𝑐𝑜𝑙𝑢𝑚𝑛)




Neg Pos
Cell = number
NO
Percentage = xx%
Proportions = 0.xx
YES Column total = total
row

Exy = YESPos – YESNeg




UNIT 24 – Describing the association between two variables – Babbie Ch. 16 pp. 458-463
‘Measures of association’ refers to a wide variety of coefficients that measure (the direction
and) the strength of an association between two variables (bi-variate) in a dataset. Most of
the coefficients can take values between -1 (perfect negative association) and +1 (perfect
positive association), with 0 meaning no relationship at all (values close to zero can be seen
as weak associations).
The number of coefficients that can be used to describe relationships between variables is
very large. The choice between these measures depends to a large extent on the level of
measurement of the variables that are being used.



2

, - Pearson’s R: direction and strength of linear correlation with one number. It is a
standardized measure of strength for the linear relationship between two scale
variables only
- Spearman’s rho: can be used as a more robust coefficient to look at the relationship
between two quantitative variables (ordinal or scale). Also, it can be used for
consistently increasing or decreasing non-linear associations. Raw scores are sorted
from high to low and replaced by the ranks of values. The highest value of a variable is
given rank 1, the second highest value is given rank 2, etcetera. Because of that, it can
also be used to look at the bivariate association between two ordinal variables.
- Kendall’s tau: can also be used as a measure of association for a consistently increasing
or decreasing relationship between two ordinal variables, but only when the number of
categories is relatively small so the relationship can be displayed in a contingency table.
Kendall’s tau-b can be used for squared tables (3x3, 4x4, for example), whereas
Kendall’s tau-c can be used for rectangular tables (2x3, 3x4 etc..).
- Cramer’s V: To measure the association between two nominal variables or between a
nominal and an ordinal variable. Unlike the previous coefficients, Cramér’s V cannot
take a value lower than 0, since the categories are not ordered and it therefore does not
make sense to talk about a positive or negative association.
- % difference E: In case of two dichotomous variables. The counts of two dichotomous
variables are shown in a squared contingency table (2x2) and the column percentages
for the independent variable are calculated. The percentages are compared horizontally
and expressed as % difference E.

Scatterplot: is used by quantitative
variables. Person’s R is used to see
the direction and strength of linear
correlation with one number.
See picture ->




3

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur annemiekst. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €7,79. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

73918 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€7,79  15x  vendu
  • (1)
  Ajouter