Hfst 11: Orthogonaliteit gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!
2
De norm of lengte van 𝒗
⃗ → ||𝒗
⃗ || = √𝒗 ⃗ = √𝑣
⃗ ∙ 𝒗 ⃗⃗⃗⃗1 + ⋯ + ⃗⃗⃗⃗⃗
𝑣𝑚 ² en ||𝒗
⃗ ||² = 𝒗
⃗ ∙ 𝒗
⃗
Eenheidsvector van 𝒗 ̂ = 𝒗⃗ → de norm van deze vector = 1, ligt in dezelfde richting als 𝒗
⃗ → ⃗𝒗 ⃗
⃗ ||
||𝒗
Afstand tussen twee vectoren → d(𝒖 ⃗ ) = ||𝒖
⃗ ,𝒗 ⃗ || = euclidische afstand
⃗ −𝒗
⃗ = ||𝒖
⃗ ∙ 𝒗
𝒖 ⃗ || ∙ ||𝒗
⃗ || cos(θ) = 𝒖
⃗ 𝑻𝒗
⃗ (zodat u een 1xn matrix wordt, v een nx1)
⃗ ∙𝒗
𝒖 ⃗
cos(θ) = ⃗ || ∙ ||𝒗
⃗ ||
= de cosinus-similariteit (similariteit tussen twee vectoren)
||𝒖
Welke vectoren hebben de grootste cosinus-similariteit?
Bereken de norm van alle vectoren
Vul ze in bovenstaande formule in
Hoogste getal heeft het meest gemeenschappelijk
1 = alles gemeenschappelijk (getal van 0 – 1)
Orthogonaliteit:
2 vectoren 𝒖 ⃗ zijn orthogonaal (loodrecht) als 𝒖
⃗ 𝐞𝐧 𝒗 ⃗ =0
⃗ ∙ 𝒗
Orthogonale = lineair onafhankelijke verzameling
Een verzameling S = {𝒗
⃗ 1, …, 𝒗
⃗ n} is orthogonaal als elk paar van vectoren uit de verzameling orthogonaal is
Indien S een orthogonale verzameling is, is S lineair onafhankelijk
Voor alle 𝑣 i en 𝑣 j in S testen of ze orthogonaal zijn 𝑣 ⃗⃗⃗ j = ⃗0 voor i ≠ j
⃗⃗⃗ i . 𝑣
Orthonormaal = ortogonale lineair onafhankelijke verzameling met eenheidsvectoren
Een verzameling S = {𝒗
⃗ 1, …, 𝒗
⃗ n} is orthonormaal, als ze orthogonaal is en de vectoren eenheidsvectoren
zijn (norm 1 hebben), dus de vectoren zijn orthogonaal en genormeerd = orthonormaal
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur BioIngenieur. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €2,99. Vous n'êtes lié à rien après votre achat.