Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
statistic for educational scientists, part 3 - NEDERLANDSE samenvatting €10,49
Ajouter au panier

Resume

statistic for educational scientists, part 3 - NEDERLANDSE samenvatting

 17 vues  0 fois vendu

Een Nederlandse, gestructureerde en praktische samenvatting van statistic for educational scientists. Ik heb de Engelse powerpoints vertaald naar het Nederlands en op basis hiervan een samenvatting gemaakt! Veel succes ermee! (Laat na aankoop ook gerust een review achter voor je medestudenten)

Aperçu 4 sur 56  pages

  • 27 mai 2024
  • 56
  • 2023/2024
  • Resume
  • statistiek 3
Tous les documents sur ce sujet (2)
avatar-seller
elinevanmuysen
STATISTICS FOR EDUCATIONAL SCIENTISTS
HOOFDSTUK 1 - ILLUSTRATIE DATA-ANALYTISCHE PROCES
FLOWCHART VAN HET DATA-ANALYTISCHE PROCES
1. Voorbereidingen
 Is de onderzoeksvraag duidelijk?
 Evalueer de proefopzet
 Controleer gegevens op fouten
(vb. decimaal punt vergeten, score hoger dan 40…)

2. Exploratieve data-analyse
Gebruik tools van beschrijvende statistiek om
 Vertrouwd te worden met gegevens
 Tentatief antwoord op onderzoeksvraag te zoeken
 Uitschieters te detecteren
 Interessante aspecten van gegevens aan het licht te brengen

3. Statistische inferentie
1)Formuleer modellen en hypothesen
2)Toetsstatistiek: keuze en waarde
3)Leid steekproevenverdeling af, bepaal p-waarde en neem een beslissing
4)Bepaal de effectgrootte

Notatie
 Yij: score van persoon i in groep j op de AV, met j gelijk aan 1 of 2
 nj: aantal observaties in groep j
 Y j: steekproefgemiddelde in groep j

4. Presentatie
 Formuleer de conclusie
- Geef antwoord op onderzoeksvragen
- Gebruik inhoudelijke terminologie

 Vat resultaten samen in een grafiek
 Geef grenzen van bevindingen aan

5. Opmerking: in realiteit data-analytisch proces vaak ingewikkelder, vb. bij modellen horen
bepaalde assumpties (zoals normaal verdeeld, varianties gelijk) die soms niet opgaan




1

,STAPPENPLAN STATISTISCHE INFERENTIE
Formuleer modellen en hypothesen (1)
H0: μ1 = μ2 versus H1: μ1  μ2 Opgelet: uitgebreid
model komt neer op een
Beperkt model Uitgebreid model beperkt model als μ1 =
μ2
Yi1 iid N(μ,σ2), i = 1,…,n1 Yi1  N(μ
iid 1,σ ), i = 1,…,n1
2 iid = independent and
identically distributed:
Yi2iid N(μ,σ2), i = 1,…,n2 Yi2  N(μ2,σ2), i = 1,…,n2
iid
observaties zijn
onafhankelijk en komen
uit dezelfde verdeling
 
Yij = μ + Ɛij,iidƐij  N(0,σ2) Yij = μj + Ɛij, Ɛij  iidN(0,σ2)




Toetsstatistiek: keuze en waarde (2)
Eigenschappen van de verdeling van schatter Y 2 - Y 1 over verschillende steekproeven heen
 Normaal verdeeld
 Met gemiddelde waarde μ2 – μ1

 En standaardafwijking

steekproefvarianties

σ 1
+
1
n1 n2
onbekend, dus schatten o.b.v.



( Y 2−Y 1 )−( μ 2−μ 1) ( Y onder
2−Y 1 )−0 Formularium:
t= = H0
SE(Y 2−Y 1) SE (Y 2−Y 1)

waarbij: SE(Y 2−Y 1) =
standaardfo √ n 1+n 2−2
samengestelde schatter
S2p

( n1−1 ) S'12 + ( n 2−1 ) S '22 x 1 1
+
n1 n2


nj
1
En waarbij: S’j2 = ∑ ( Y −Y j )2
nj−1 i=1 ij
(j = 1,2)



Leid steekproefverdeling af en bepaal p-waarde, en neem een beslissing (3)
Gegeven H0 is waar: t  tdf = n1 + n2 - 2
Een steekproevenverdeling zij herhaalde steekproeftrekkingen

Bepaal p-waarde: vergelijk waarde van toetsstatistiek met t-verdeling met df

Beslissing (optioneel):
 Vergelijk met α om al dan niet te besluiten tot significantie
 Beslissing nemen (al dan niet verwerpen van H0)


Bepaal effectgrootte (4)
De effectgrootte helpt “praktische significantie” evalueren
100(1- α )% BI voor verschil tussen twee gemiddelden: (Y 2 - Y 1)  t*(n1 + n2 – 2) x SE(Y 2 - Y 1)

kritieke

2

,HOOFDSTUK 2 - VARIANTIE-ANALYSE MET ÉÉN FACTOR
NOTATIE EN VOORSTELLING VAN DE GEGEVENS
Notatie
 Yij: score van persoon i in groep j op de AV
 nj: aantal observaties in groep j
 N: totaal aantal observaties
 a: aantal groepen
 Y j: steekproefgemiddelde in groep j
 Y : globale steekproefgemiddelde

Abstracte voorstelling van de gegevens
 Tabelvorm
 Participant-dataset: meestal gebruik in software

EXPLORATIEVE DATA-ANALYSE
Kengetallen per conditie
Y 1 = 35.4 Y 2 = 33.6 Y 3 = 25.6 Y 4 = 23.3
S’1 = 7.81 S’2 = 9.45 S’3 = 6.5 S’4 = 5.5
n1 = 11 n2 = 10 n3 = 13 n4 = 12

Kengetallen voor de volledige dataset
Y = 29.1
S’Y = 8.76
N = 46

STATISTISCHE INFERENTIE

Formuleer H0: μ1 = μ2 = … = μa
modellen en Beperkt model: Yij = μ + Ɛiidij, Ɛij  N(0,σ2)
hypothesen
H1: er is ergens een verschil
Uitgebreid model: Yij = μj + iid
Ɛij, Ɛij  N(0,σ2)



Toetsstatistiek:  Vergelijken van adequaatheid van beide modellen
keuze en  Hoe gaan we relatieve adequaatheid van beperkt en uitgebreid model na?
waarde  Twee aspecten zijn van belang

1. Fit: hoe goed passen de modellen bij de gegevens?
 Kleinste kwadratenschatters voor μ parameters van beide modellen
a nj
Beperkt model: zoek μ zodat ∑ ∑ ¿ ¿ ¿Y ij – μ)2 minimaal is  ^μ = Y
j=1 i=1

a nj
Uitgebreid model: zoek μ1,…, μa zodat ∑ ∑ ¿ ¿ ¿Y ij – μj)2 minimaal is  ^μj = Y
j=1 i=1


 Levert samenvattende maat op voor fit van beide modellen, gebaseerd op
grootte van voorspellingsfouten of residuen: ‘errorkwadratensom’
a nj
SSErrorBeperkt = ∑ ∑ ¿ ¿ ¿Y ij – Y )2 = SSTotaal = (N – 1). SY’2
j=1 i=1
a nj a
SSErrorUitgebreid = ∑ ∑ ¿ ¿ ¿Yij – Y j)2 = ∑ ¿¿ nj – 1). Sj’2
j=1 i=1 j=1


3

, SSErrorBeperkt ≥ SSErrorUitgebreid




2. Complexiteit van beide modellen
 # vrijheidsgraden = # observaties - # geschatte parameters in het model
 Eenvoudiger/beperkter model heeft meer vrijheidsgraden
a
dfBeperkt = ∑n–1=N–1 j μ
j=1
a
dfUitgebreid = ∑n–a=N–a j μ1,…, μa
j=1


F-statistiek:

SS Error /Beperkt −SS Error /Uitgebreid a

df Beperkt −df Uitgebreid
= SSEffect = ∑ n (Y j j - Y )2
j=1
F=
SS Error /Uitgebreid
df Uitgebreid

SS Effect
iid
a−1 MS Effect schatter voor σ 2 Ɛij  N(0,σ2)
F= =
SS Error /Uitgebreid MS Error /Uitgebreid
N −a

MS Effect a Variabiliteit tussen groepen

F=
MS Error /Uitgebreid
= ∑ nj¿ ¿ ¿ ¿  foutenvariabiliteit
 systematische variabiliteit ten gevolge van variatie in OV
j=1 Variabiliteit binnen groepen
 foutenvariabiliteit




Leid
steekproeven-
verdeling af




Bepaal

4

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur elinevanmuysen. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €10,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

52355 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€10,49
  • (0)
Ajouter au panier
Ajouté