Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Statica en sterkteleer: formules en oplossingsmethodes verschillende soorten oefeningen

Note
-
Vendu
1
Pages
5
Publié le
12-06-2024
Écrit en
2023/2024

Dit document bevat de meeste formules die gekend moeten zijn, ook verschillende oplossingsstrategieën en uitleg om bepaalde oefeningen in verband met statica en sterkteleer op te lossen.










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
12 juin 2024
Nombre de pages
5
Écrit en
2023/2024
Type
Resume

Aperçu du contenu

Formules




Statica:
1. Som van krachten in evenwicht: ΣF = 0
2. Som van momenten in evenwicht (rond een punt): ΣM = 0
3. Evenwicht in de x-richting: ΣFx = 0
4. Evenwicht in de y-richting: ΣFy = 0
5. Evenwicht in de z-richting (voor driedimensionale problemen): ΣFz = 0
6. Moment van een kracht rond een punt: M = F * d
7. Moment van een kracht rond een as (bijvoorbeeld bij een momentarm): M = F * r

Sterkteleer:
1. Normaalspanning (axiale spanning) in een staaf: σ = F / A
2. Normaalspanning op een bepaald punt op een balk onder buiging: σ = (M * y) / I
3. Schuifspanning in een staaf: τ = F / A
4. Buigspanning in een balk onder buiging: σ = (M * c) / S
5. Modulus van elasticiteit (ook wel Young's modulus genoemd): E = σ / ε
waarbij: E = Modulus van elasticiteit (in pascal, Pa) σ = Normaalspanning (in pascal, Pa) ε =
Rek of vervorming (eenheidloos)
6. Traagheidsmoment: I = ∫(y^2 * dA)
waarbij: I = Traagheidsmoment (in vierkante meter, m^4) y = Afstand van het element dA tot
de neutrale as (in meter, m) dA = Infinitesimaal element van dwarsdoorsnedeoppervlak (in
vierkante meter, m^2)

, !# %
" $%&,(%)
- τ=$ ≤ &'()(*+'(,-./0123 (schuifspanning berekenen van een pin, deze formule ook
!"#
gebruiken voor de diameter van een pin te bepalen (Apin omvormen tot π*r2))
4∙3 7
- τ= 𝑚𝑒𝑡 𝐼 = ∙ 𝑟 8 (met ‘τ’ de schuifspanning, ‘T’ de torsie, ‘r’ de straal en ‘I’
! "
het polair traagheidsmoment)

- 𝐼! = 𝐼!,#$%&'()%*'& + (𝑦 ∗ − 𝑦#$%&'()%*'& ), ∙ 𝐴 (Formule van Steiner)
∑!"#
$ (/! ∙ 2! )
- 𝑍𝑃 = ∑!"#
(ZP = het zwaartepunt van een hele structuur bestaande uit
$ (/! )
kleinere structuren)
4∙2
- 𝜎= (met M het buigmoment, y de afstand tot de neutrale vezel (neutrale
5
vezel ligt op hoogte van het zwaartepunt) en I het traagheidsmoment)
è Als we onder de x-as liggen bij een momenten diagram dan staat het
gebied boven de neutrale vezel (en dus boven het zwaartepunt) onder
trek (T) en het gebied onder de neutrale vezel staat dan in compressie
(C).
4
- 𝑊6(,! ≥ 7 %&' (elastisch buigend moment van een constructie of balk, moet je
()*+!
berekenen om bijvoorbeeld het kleinste UPN profiel te zoeken dat een
geïntroduceerde buigspanningen kan opvangen, moet dus het grootste moment
zoeken dat ergens op de balk werkt (is makkelijk te vinden in een momenten
diagram))



- Enkelvoudige afschuiving (normaalspanning bij bijvoorbeeld een piston):
(9)∙:
è 𝜎&)8 = / ≤ 𝜎&)8,4/; eventueel met 𝛾 de veiligheidsfactor
- Dubbelvoudige afschuiving (schuifspanning bij bv een pin)
#
∙(9)∙:
è 𝜏&)8 = ,
/-!$
≤ 𝜏&)8,4/; eventueel met 𝛾 de veiligheidsfactor
- Torsie spanning:
4∙%
è 𝜏 = < met M het moment, r de straal en J het traagheidsmoment
- buigspanning:
4
è 𝜎=6>?*>@ = A%&' ≤ 𝜎&)8,4/;
+),/
- Normaalspanning:
B∙(9)
è 𝜎>$%&))( = / ≤ 𝜎&)8,4/; Met N de normaalkracht, en eventueel
met 𝛾 de veiligheidsfactor.
- Buiging spanning van een balk (om de minimale waarde voor de zijde van de
vierkante doorsnede te bepalen)
/
4∙ !0
è 𝜎=6>?*>@ = 5
,
≤ 𝜎&)8,&)C met I voor een vierkant is D,




;∙E
- 𝜑 = F∙< formule voor de hoekvervorming met T de torsie, dus het moment
dat eigenlijk de torsie veroorzaakt
€5,06
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
LockSmith

Faites connaissance avec le vendeur

Seller avatar
LockSmith Thomas More Hogeschool
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2
Membre depuis
2 année
Nombre de followers
2
Documents
6
Dernière vente
1 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions