Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Examen

Introduction to Real Analysis 4th Edition Bartle Solutions Manual

Note
-
Vendu
-
Pages
21
Grade
A+
Publié le
01-07-2024
Écrit en
2023/2024

CONTENTS Chapter 1 Preliminaries .....................................................1 Chapter 2 The Real Numbers ............................................... 7 Chapter 3 Sequences .......................................................17 Chapter 4 Limits ...........................................................28 Chapter 5 Continuous Functions ........................................... 33 Chapter 6 Differentiation ...................................................43 Chapter 7 The Riemann Integral ...........................................51 Chapter 8 Sequences of Functions ..........................................61 Chapter 9 Infinite Series ................................................... 68 Chapter 10 The Generalized Riemann Integral ............................. 77 Chapter 11 A Glimpse into Topology .......................................88 Selected Graphs .............................................................95 This sample only, Download all chapters at: CHAPTER 1 PRELIMINARIES We suggest that this chapter be treated as review and covered quickly, without detailed classroom discussion. For one reason, many of these ideas will be already familiar to the students — at least informally. Further, we believe that, in practice, those notions of importance are best learned in the arena of real analysis, where their use and significance are more apparent. Dwelling on the formal aspect of sets and functions does not contribute very greatly to the students’ understanding of real analysis. If the students have already studied abstract algebra, number theory or combinatorics, they should be familiar with the use of mathematical induction. If not, then some time should be spent on mathematical induction. The third section deals with finite, infinite and countable sets. These notions are important and should be briefly introduced. However, we believe that it is not necessary to go into the proofs of these results at this time. Section 1.1 Students are usually familiar with the notations and operations of set algebra, so that a brief review is quite adequate. One item that should be mentioned is that two sets A and B are often proved to be equal by showing that: (i) if x∈A, then x∈B, and (ii) if x∈B, then x∈A. This type of element-wise argument is very common in real analysis, since manipulations with set identities is often not suitable when the sets are complicated. Students are often not familiar with the notions of functions that are injective (=one-one) or surjective (=onto). Sample Assignment: Exercises 1, 3, 9, 14, 15, 20. Partial Solutions: 1. (a) B ∩ C ={5,11,17,23,...}={6k −1 : k ∈N},A∩(B ∩C)={5,11,17} (b) (A∩B)C ={2,8,14,20} (c) (A∩C)B ={3,7,9,13,15,19} 2. The sets are equal to (a) A, (b) A∩B, (c) the empty set. 3. If A⊆B, then x∈A implies x∈B, whence x∈A∩B, so that A⊆A∩B ⊆A. Thus, if A⊆B, then A=A ∩ B. Conversely, if A = A ∩ B, then x∈A implies x∈A ∩ B, whence x∈B. Thus if A=A ∩ B, then A ⊆ B. 4. If x is in A(B ∩ C), then x is in A but x /∈ B ∩ C, so that x∈A and x is either not in B or not in C. Therefore either x ∈ AB or x ∈ AC, which implies that x ∈ (AB) ∪ (AC). Thus A(B ∩ C) ⊆ (AB) ∪ (AC). 1 Conversely, if x is in (AB) ∪ (AC), then x ∈ AB or x ∈ AC. Thus x ∈ A and either x /∈ B or x /∈ C, which implies that x ∈ A but x /∈ B ∩ C, so that x ∈ A(B ∩ C). Thus (AB) ∪ (AC) ⊆ A(B ∩ C). Since the sets A(B∩C) and (AB)∪(AC) contain the same elements, they are equal. 5. (a) If x ∈ A∩(B ∪C), then x∈A and x∈B ∪C. Hence we either have (i) x ∈ A and x ∈ B, or we have (ii) x ∈ A and x ∈ C. Therefore, either x ∈ A ∩ B or x ∈ A ∩ C, so that x ∈ (A ∩ B) ∪ (A ∩ C). This shows that A ∩ (B ∪ C) is a subset of (A∩B)∪(A∩C). Conversely, let y be an element of (A∩B)∪(A∩C). Then either (j) y ∈ A∩B, or (jj) y ∈A∩C. It follows that y ∈A and either y ∈B or y ∈C. Therefore, y ∈A and y ∈B ∪C, so that y ∈A∩(B ∪C). Hence (A∩B)∪ (A∩C) is a subset of A∩(B ∪C). In view of Definition 1.1.1, we conclude that the sets A∩(B ∪C) and (A∩B)∪(A∩C) are equal. (b) Similar to (a). 6. The set D is the union of {x : x∈A and x /∈ B} and {x : x /∈ A and x∈B}. 7. Here An ={n+1,2(n+1),...}. (a) A1 ={2,4,6,8,...},A2 ={3,6,9,12,...},A1 ∩A2 = {6,12,18,24,...} = {6k : k ∈ N}=A5. , because if n>1, then n∈An−1; moreover 1 ∈/ An. Also , because n /∈An for any n∈N. 8. (a) The graph consists of four horizontal line segments. (b) The graph consists of three vertical line segments. 9. No. For example, both (0, 1) and (0,−1) belong to . 1 − − − 12. If 0 is removed from E and F, then their intersection is empty, but the intersection of the images under f is {y : 0<y ≤1}. ) is empty, and f(E F) = 14. If y ∈f(E ∩ F), then there exists x∈E ∩ F such that y =f(x). Since x∈E implies y ∈f(E), and x∈F implies y ∈f(F), we have y ∈f(E)∩f(F). This proves f(E ∩F) ⊆ f(E)∩f(F). 15. If x∈f−1(G) ∩ f−1(H), then x∈f−1(G) and x∈f−1(H), so that f(x)∈G and f(x)∈H. Then f(x)∈G ∩ H, and hence x∈f−1(G ∩ H)

Montrer plus Lire moins
Établissement
MAT 3300
Cours
MAT 3300










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
MAT 3300
Cours
MAT 3300

Infos sur le Document

Publié le
1 juillet 2024
Nombre de pages
21
Écrit en
2023/2024
Type
Examen
Contient
Questions et réponses

Sujets

€15,97
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
BRAINBOOSTERS Chamberlain College Of Nursing
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
666
Membre depuis
2 année
Nombre de followers
250
Documents
23255
Dernière vente
1 semaine de cela

In this page you will find all documents , flashcards and package deals offered by seller BRAINBOOSTERS

4,5

341 revues

5
265
4
30
3
21
2
5
1
20

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions