Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Lineaire Algebra - Hfst 1 Stelsel van Lineaire Vergelijkingen €0,00

Resume

Samenvatting Lineaire Algebra - Hfst 1 Stelsel van Lineaire Vergelijkingen

 17 vues  0 fois vendu

Samenvatting van 3 pagina's voor het vak Lineaire algebra aan de UGent (Oehoe)

Aperçu 1 sur 3  pages

  • 10 juillet 2024
  • 3
  • 2023/2024
  • Resume
Tous les documents sur ce sujet (13)
avatar-seller
BioIngenieur
Hoofdstuk 1
Stelsels van Lineaire vergelijkingen


Oplossen van lineaire stelsels
Een stelsel kan adhv een matrix opgelost worden

Meetkundige interpretatie van een stelsel vergelijkingen
=> de snijlijn van de vergelijkingen (punt, rechte, vlak, …) in een 3D of meerdimensionale ruimte = al de
oplossingen van het stelsel: 0,1, meer of oneindig veel oplossingen



Indien je een stelsel met twee vergelijkingen hebt die een veelvoud van elkaar zijn, kun je dit meetkundig als 2
parallelle lijnen, vlakken, …. beschouwen dat geen punt gemeenschappelijk hebben dus de nulverzameling als
oplossingsverzameling = de lege verzameling



Equivalente stelsel = als hun oplossingsverzameling identiek is aangeduid met ~, bij matrix

Equivalentie veranderd niet bij

▪ Omwisseling twee vergelijkingen van plek wisselen (rijen wisselen in matrix)
▪ Herschaling elke term in de rij met een getal verschillend van 0 vermenigvuldigen
▪ Substitutie een herschaling van een rij optellen bij een andere rij (kan ook herschaling op gebeuren)



Gereduceerde echelonvorm
A = coëfficiëntenmatrix

𝑏⃗ = constantenmatrix

𝑥 = vectormatrix (met de onbekenden)


Heeft Ax = b tenminste 1 oplossing voor elke mogelijke b?

 Mag geen strijdigheid hebben dus, dus vermijden dat A een nulrij heeft, als je in elke rij een pivot krijgt
en het aantal rijen = aantal pivots, dan kan het niet en heb je een strijdigheid want op de laatste rij zal je
0 + 0 + 0 + … = getal uitkomen


Uitgebreide matrix = [A 𝑏⃗]


Voorwaarden voor gereduceerde echelonvorm (kan ook niet gereduceerd zijn)

▪ Nulrijen bevinden zich onderaan de matrix
▪ Het meest linkse element op een rij dat geen 0 is, is een 1
▪ De pivot is het enige niet nul element in z’n kolom
▪ De pivots moeten trapsgewijs gaan, i of j mag niet groter zijn

Afhankelijke/basis variabele = als in de kolom van de variabele een pivot staat = pivotkolom

Vrije variabele = als er geen pivot in de kolom staat = geen pivotkolom (basisvariabelen in functie van deze
schrijven)

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur BioIngenieur. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €0,00. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

67866 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
Gratuit
  • (0)