Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting Calculus 1 €2,99   Ajouter au panier

Resume

Samenvatting Calculus 1

1 vérifier
 1678 vues  16 fois vendu
  • Cours
  • Établissement
  • Book

Complexe getallen, volledige inductie, limieten, differentatie, transcendental functions, integralen

Aperçu 2 sur 9  pages

  • Non
  • Stof calculus 1
  • 15 mai 2012
  • 9
  • 2011/2012
  • Resume

1  vérifier

review-writer-avatar

Par: rang92 • 7 année de cela

avatar-seller
1.1 Calculus 1

R reële getallen
N natuurlijke getallen ,0,1,2,…-
Z gehele getallen ,…,-2,-1,0,1,2,…-
Q rationale getallen (te schrijven als een breuk van gehele getallen)
C complexe getallen

Complexe getallen
Dictaat: Complex H1-H7

We voeren twee nieuwe, niet reële getallen in, die we i en –i noemen via de definitie i2 = (-i)2 = -1.
Complexe getallen zijn alle getallen van de vorm a + bi, waar a en b reëel zijn. We noteren de
verzameling van de complexe getallen met c. Dus c = { a + bi | a, b є r }

Vb: z = 3 + 2i w = -1 – i
z+w=2+i
z – w = 4 + 3i
z ∙ w = (3 + 2i)(-1 – i) = -3 - 5i – 2i2 = -1 – 5i
z = 3 + 2i = (3 + 2i)(-1 + i) = -5 + i = -5 + i om een term x + by uit de noemer weg te
w -1 – i (-1 – i)(-1 + i) 2 2 2 halen, vermenigvuldigen we teller en noemer
met x – by.

Voor het complexe getal z = a + bi noemen we het getal z = a – bi de complex geconjugeerde of
complex toegevoegde van het getal z. Voor z is a het reële deel en b het imaginaire deel. We noteren
het imaginaire deel met Im z = a en het reële deel met Re z = b.

We identificeren een complex getal met een punt in het platte vlak: x + iy (x, y), waarbij 1 dus op
(1, 0), i op (0, 1) en een reëel getal x op (x, 0) ligt.
Getallen van de vorm iy heten imaginaire getallen, de verzameling { iy: y є r } heet de imaginaire as.




Punten in het platte vlak kun je ook met poolcoördinaten weergeven: elk punt P wordt eenduidig
bepaald door de afstand r tot (0, 0) en de hoek φ die het lijnstuk van P naar 0 maakt met de positieve
x-as. Het paar (r, φ) zijn de poolcoördinaten van P, met de afspraak –π < φ ≤ π.

x = r cos φ en y = r sin φ
r = √(x2 + y2)

, cos φ = x . sin φ = y .
√(x2 + y2) √(x2 + y2)
r = modulus = |z|
φ = hoofdwaarde van het argument van z = Arg z

We spreken van het argument van z als we ons niet langer beperken tot –π < 0 ≤ π. Notatie: arg z.
Bij vermenigvuldigen van complexe getallen moet je de moduli van de complexe getallen met elkaar
vermenigvuldigen en de argumenten bij elkaar optellen.
|z1z2| = |z1| ∙ |z2| arg(z1z2) = arg z1 + arg z2

We hanteren als notatie eiφ = cos φ + i sin φ, dus een complex getal z met modulus r en argument φ
is te schrijven als: z = r cos φ + ir sin φ = r(cos φ + i sin φ) = reiφ.

De Moivre’s stelling: zn = rn(cos nφ + i sin nφ). Dus we verheffen de modulus tot macht n en
vermenigvuldigen de argumenten met n.


Volledige inductie
Dictaat: Inductie H1, H3

Somnotatie:





Volledige inductie is een methode om beweringen te bewijzen die voor alle natuurlijke getallen n
waar zijn. De manier waarop je hierbij te werk gaat is als volgt:
1) Basisstap: laat zien dat de bewering waar is voor n=1.
2) Inductiestap: laat zien dat de bewering waar is voor het getal m+1 als deze waar is voor m.


∑ ∑


Het binomium van Newton
De uitwerking van de tweeterm (a + b)n voor willekeurige n є N.

Voor een geheel getal n ≥ 0 schrijven we
n! =1∙2∙…∙n als n є N (Spreek uit: n-faculteit)
=1 als n = 0
(n + 1)! = n! ∙ (n + 1)

Verder: ( )

( )

( ) ( )
De binomiaalformule van Newton:

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Suzanvaneijden. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €2,99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

75632 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!
€2,99  16x  vendu
  • (1)
  Ajouter