Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
WGU D206 Data Processing (Data Cleaning) Comprehensive Exam || With Questions & Answers (100% Accurate) €12,12   Ajouter au panier

Examen

WGU D206 Data Processing (Data Cleaning) Comprehensive Exam || With Questions & Answers (100% Accurate)

 11 vues  0 fois vendu
  • Cours
  • Data management
  • Établissement
  • Data Management

WGU D206 Data Processing (Data Cleaning) Comprehensive Exam || With Questions & Answers (100% Accurate) WGU D206 Data Processing (Data Cleaning) Comprehensive Exam || With Questions & Answers (100% Accurate) What are the 7 Phases of the Data Analytics Life Cycle? - ANSWER - 1. Business Understa...

[Montrer plus]

Aperçu 3 sur 16  pages

  • 15 septembre 2024
  • 16
  • 2024/2025
  • Examen
  • Questions et réponses
  • Data management
  • Data management
avatar-seller
WGU D206 Data Processing (Data Cleaning)
Comprehensive Exam || With Questions &
Answers (100% Accurate)




Conceptial Researchers
conceptialresearch@gmail.com
2024

, WGU D206 Data Processing (Data
Cleaning) Comprehensive Exam || With
Questions & Answers (100% Accurate)
What are the 7 Phases of the Data Analytics Life Cycle? - ANSWER - 1. Business
Understanding/Discovery Phase
2. Data Acquisition
3. Data Cleaning
4. Data Exploration
5. Predictive Modeling
6. Data Mining
7. Data Reporting

Explain the Business Understanding & Discovery Phase - ANSWER - The analyst
defines the question(s) of interest that need to be answered. The analyst will
determine the needs of the stakeholders, assess resource constraints, and define
project outcomes.

Explain the Data Acquisition Phase - ANSWER - The process of collecting and
storing data for easy retrieval from a database or even a component of a data
warehouse. Web scraping and surveys can be used to acquire data.

Explain the Data Cleaning Phase - ANSWER - Also known as data cleansing, data
wrangling, data munging, & feature engineering. Analyst utilize SQL, Python, R or
excel to transform and modify data.

Explain Data Exploration Phase - ANSWER - In this phase the analyst begins to
understand the basic nature of the data, the relationships within in (between data
variables), the structure of the dataset, the presence of outliers, and the distribution
of the data. This phase utilizes data visualization tools and numerical
summaries( measures of central tendency and variability).

Explain the Predictive Modeling Phase - ANSWER - This phase allows the analyst to
move beyond describing the data by creating models that enable predictions of
outcomes. Python and R are used to automate the training and use of models.

Explain the Data Mining Phase - ANSWER - This phase looks for patterns in large
sets of data. Also called Machine Learning. A specialized segment of data mining
techniques that continually update to improve modeling over time.

What is a BIG difference between Data Exploration Phase and Data Mining Phase? -
ANSWER - Both phases uncover patterns; however, the main difference is:
(a) Data Exploration is the initial step to uncovering patterns using both manual and
automated methods.
(b) Data Mining is an in-depth step to discover patterns using only automated
methods such as Machine Learning.

, Name Tools & Techniques used in the Business Understanding & Discovery Phase -
ANSWER - Tools: Scope Statement, Stakeholder Register, Gannt Chart, Network
Diagram
Techniques: Critical Path Method, KPI, Budget Estimation, Schedule Estimation,
SWOT Analysis

Name Tools & Techniques used in the Data Acquisition Phase - ANSWER - Tools:
SQL, Web Scraping Software, Survey, Input Data (self-generated data), NoSQL
(used to collect unstructured data.
Techniques: ETL (Extract, Transform, Load), API (Application Programming
Interface), Web Scrapping

Name Tools & Techniques used in the Data Cleaning Phase - ANSWER - Tools:
Python, R, SQL, Excel.
Techniques: Data Reduction: optimize storage capacity, Modification,
Transformation, Anomaly Detection.

Name Tools & Techniques used in the Data Exploration Phase - ANSWER - Tools:
Distributions (normal or skewed curve), visualization tools (tableau, R, Python,
RStudio, and histogram), statistical tools such as mean, median and mode.
Techniques: Correlation Discovery, Pattern Discovery, Visualization (histogram,
charts, tables, boxplot, etc.), variability (Standard deviation, Quartiles)

Name Tools & Techniques in the Predictive Modeling Phase - ANSWER - Tools:
Python and R
Techniques: Data Modeling, Correlation Modeling, Regression Modeling, Time
Series Modeling, Cross Validation, Classification Models, & Training Models.

Name Tools & Techniques in the Data Mining Phase - ANSWER - Tools: Python and
R
Techniques: Training dataset to build models, testing dataset for model evaluation,
classification, clustering, AI, Machine Learning, Deep Learning.

Name Tools & Techniques in the Data Reporting Phase - ANSWER - Tools:
Dashboards, Tableau, Story telling (feature of tableau), Graph, charts, images, etc.
Techniques: Visualization and Stakeholder Communication.

Dealing with data types such as: unstructured, semi-structured, quantitative, and
qualitative AND quality like uniqueness, relevance, reliability, validity, and accuracy
which make access difficult are POTENTIAL PROBLEMS in what phase? -
ANSWER - Data Acquisition Phase

What DA Phase includes the following POTENTIAL PROBLEMS? With large
audience consumption, mistakes can cause bad business decisions and loss of
revenue. The using improper scales for graphs could push for inaccurate
interpretations of the story. - ANSWER - Data Reporting Phase

Lack of clear focus on the stakeholders, timeline, limitations, and budget which could
derail the analysis is a POTENTIAL PROBLEMS in what phase? - ANSWER -
Business Understanding and Discovery Phase

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur conceptialresearchers. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €12,12. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

80364 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 14 ans

Commencez à vendre!

Récemment vu par vous


€12,12
  • (0)
  Ajouter