Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Samenvatting - Advanced Econometrics 1 (6414M0005Y) €6,49
Ajouter au panier

Resume

Samenvatting - Advanced Econometrics 1 (6414M0005Y)

 2 fois vendu
  • Cours
  • Établissement

Extensive summary of the course Advanced Econometrics 1.

Aperçu 4 sur 37  pages

  • 27 septembre 2024
  • 37
  • 2023/2024
  • Resume
avatar-seller
Advanced Ecomometrics
Herhaling linear models
Remember the standard regression model y
=

XB + E




Conditioning
7
Conditioning is important in econometrics
2
VB what is variance today, given yesterday
Remember that an assumption of the classic linear regression model is that should be fixed therefore we
condition on

Some important formulas
·
Marginal density

f(y) =
JA(x y)dx
,
or f(x) =
(f(x y)dy ,




·
Conditional density
b(y x)f(y x)
, ,




f(yx) =
f(x) Sh(y x) by=

,





Conditional expectation

Elyx] =

Syb(y(x) dy
·
Conditional variance [y(x] E[(y ETy(x])"(x]
·
var : -




·
Law of iterated expectations E[y] Ex[Eyix [y(x]]
· :




·
Marginal variance :
(y) E[var (y(x)]
var =
(E[y(x]) + var

,Regressions and loss functions
Remember that the residuals are e =

y
-




y
7
Predictor : =
Xb Expected loss:
2
Real value :
y
=

XB + E
E[L(y y)() -




& We have different loss functions L(e) =
((y -y)
E[y(x]
2
8 :
8



Squared error .

e
y

Absolute error let :
Y =

med(y(x)
(1 x) if
E
-
e eso

8
Asymptotic absolute error ~
X e
if ezo
j =


q(y(x)
&
Step loss ·
Cite e-O
y =
mod(y(x)
The goal is to minimize the error, therefore we need an optimal predictor
to minimize the error. Every loss function has an optimal predictor.

Linear prediction




Ordinary least squares: goal again to minimize errors =
minei) mine-min -
(yiyi)



3
Y
I


XB xie ..


·)
xik
E[nX]
·


Yo · x
:
,
P =



: :
:
I :




xine
i


Yo
·
Xn2
...



Bu

OLS estimator minimizes - (yi -xib)2 =
ni =

(y XB)'(y XB)
-
-




boe-2Xy 2XX
=

+ 0




Bas (XX)"Xig - is the estimator of B

, -Y
P X(XX)"X'
n Matrix P projects Y on S(x)
:




e =

My M 1 P
and matrix M projects Y on So(x)
= -




D

I



> S(x) S
Both symmetric
y =
Xb =
Py and indempotent

Assumptions OLS
I
Fixed regressors: all elements of matrix X are fixed/non-stochastic rank (X) : :
b

2
Random disturbances Elui] : =
o




3
Homoskedasticity (disturbances have constant variance) Var (vi) z In : : =




4
No correlation between disturbances Cov (vi uj) ·
,
= o




5
Constant parameters B constant ·




6
Linear relation y XB : = +
u




uX N(0 In)
7
Normality: is normally distributed
E : -
,




X



Under these assumptions we have:
Unbiased: Variance:
E(B(X) B (XX)XEZuIX B : + =


Var(B(x) : (XX)"X 'Var(u(X)x(X(X)
· (x(x)"xX(X(X)" j(XX)" =




BLUE:
v(B(x) j(XX)" = -
any other estimator Distribution:
b(X -
N(B , (XX)")
N


Asymptotic theory
T
In asymptotic theory the assumption of normality is dropped, however we can still get the same result
by R -D




We first repeat some theories
8
i.i.d: independent and identically distributed
O

i.n.i.d: independent and not identically distributed
Modes of convergence



3
O
Converges in distribution Xn° X if im Fr(x) : -
F(x)) = o




O
Converges in probability Xn"-X plimXn X if :
or
= im PXn-X1 > = Yn **
X = > Xn
:
/


Converges almost surely Xn Xif P in /Xn-X1 Xn X
M S
O ** .


..
:



X
=
0 =




8
Converges in mean square XnXif nhmE (Xn-X)2 : =

, Law of Large Numbers
-n-gr -8


&
Weak (WLLN): in probability
&
Strong (SLLN): almost surely
e
Khintchine WLLN EXiBis id Mi ·
,
=

pe
O
Chebyshev WLLN :
[XiDiz him =
, ind

O
Markov SLLN EXi ·
is ,
indo

Central Limit Theorem

Zi
M -Wo , we



&
Lindeberg-Levy CLT EXiSiz id Mi p i 82 ·
,



inid
= =




Lindeberg-Feller CLT [Xibic hi E (Xi-mi(Xi mis)]
6 ·
, =


)

Liapounov CLT [Xi inid him (2 Ei
+
O ·
is ,




Transformation theory
If Xn X and Yn se If Xn"X and An " A

·
Xn + Yn X + e
·
AnXn AX

·
XnYn eX · An"Xn"A"X
·
Xn/Yn -
X/e




Delta method
·




·
n



~N(A n20)
(g(fn)
,
-




g(fo))d
g(n)
N(o
-
,




N(g(f)
nGe)]G(8)
Gi) Goe .




,
:
ag(t)
at


2
Instead of the normality assumption we assume that n is large and add new assumptions

Stability of X
plim ( * XX) plim (n Exixi') Mxx
= =





Orthogonality of X and u
plim (Xa) = o




&
Stability of u
plim (in'u) = and
plines" =



N


Using these assumptions we have

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur maaikekoens. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €6,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

69052 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€6,49  2x  vendu
  • (0)
Ajouter au panier
Ajouté