Onderzoeksmethoden
Aantekeningen kennisclips
Voorbereiding
Clip 1: Ordinary Least Squares
Waarom regressienalayse? Als we de relatie tussen twee of meer variabelen willen
onderzoeken.
- X→Y
- X beïnvloedt Y (causale relatie)
- Onafhankelijke variabele → Afhankelijke variabele
- X voorspelt Y (niet-causale relatie)
- Predictor → Criterium
Puntenwolk: sterkte aflezen door middel van lijn (beste lijn = lijn door het midden van de
puntenwolk).
- Perfect horizontale lijn: geen relatie tussen variabelen.
- Ordinary least squares methode gebruik je om te kijken welke lijn het beste bij de data
past.
Ordinary least squares methode:
- Er zullen altijd datapunten zijn die niet op de lijn liggen
- Dat komt omdat ze een andere Y-waarde hebben dan de lijn voorspelt
- Die verschillen heten residuals of fouten of error
- Al die verschillen kun je kwadrateren en bij elkaar optellen
- Dit totale gekwadrateerde verschil zegt iets over hoe de lijn bij de data past
- De lijn die resulteert in het kleinste totale gekwadrateerde verschil is de beste lijn.
Punten die afwijken van de lijn zijn residuals: verschillen tussen de punten en de lijn. Lijn met
het kleinste verschil/kleinste afstand tussen de meeste punten = best passende lijn.
Berekenen: optelsom gekwadrateerde residuals (verschil y-waarde punt en y-waarde lijn).
Waarom kwadrateren? Als je de verschillen optelt, dan komt er altijd 0 uit! Kwadrateer je?
Dan is dit probleem opgelost.
Clip 2: Regressievergelijking
Herinnering= B0 + B1 * Cognitieve belasting + E
- B0= constante (punt waar de lijn door de y-as gaat) → voorspelde waarde van Y
wanneer X = 0
- B1= het regressiegewicht of de regressie coëfficiënt (effect onafhankelijke variabele)
→ wanneer X met 1 stijgt, stijgt de voorspelde waarde van Y met b1
- Cognitieve belasting = de waarde op cognitieve belasting
- E= de residual (verschil tussen lijn en punt)
Clip 3: Model fit
Hoe goed past een lijn bij de data? Sum of Squares of the residuals → Residual Sum of
Squares → RSS
- Hoe lager de RSS hoe beter!
- Grotere sample = een grotere RSS
- Een andere schaal → een andere RSS
, Total sum of squares (TSS): totale spreiding in de puntenwolk/ totale variantie in de data.
Hoeveel de datapunten afwijken ten opzichte van het gemiddelde (nog onverklaard). RSS ook
onverklaard.
(TSS-RSS) / TSS = getal *100 = percentage afwijkingen → R2 = variantie die verklaard wordt
door de regressielijn = verklaarde variantie van het regressiemodel.
Conventionele interpretatie van R2
R2 = ,02 → klein
R2 = .13 → middelgroot
R2 = .26 → groot
SSregression: Sum of Squares of the Regression: hoeveel van de variantie die NIET verklaard
werd door het gemiddelde, wordt nu WEL verklaard door de regressielijn.
R2= 1 – (SSR/SST). Kan geïnterpreteerd worden als de verklaarde variantie.
Week 5
Clip 1: Voorwaarden
Lineaire regressie analyse steunt op een aantal aannames
1. De onafhankelijke en afhankelijke variabelen zijn op intervalniveau gemeten.
a. Getallen met verschillen! Verschillen tussen afstanden betekenen hetzelfde
over de schaal.
b. Hoe zit dat met dummy’s? 0 of 1. Bijvoorbeeld 0 (man) versus 1 (vrouw) →
kan verschil in zitten/ bepaalde rangorde in variabelen.
2. Er is een lineair (rechtlijnig) verband
3. Geen respondenten die in hun uppie heel veel invloed uitoefenen (outliners)
a. Veel invloed (influence) door: grote afstand tot het gemiddelde op de x-as
(leverage: hoe meer rechts of hoe meer links (denk aan een wip) hoe groter het
verschil→ soort hefboom/wip). Of grote afstand tot het gemiddelde op de y-as.
b. Maat voor invloed van elke respondent = Cook’s distance. Bij voorkeur niet
groter dan 1!
4. De residuals zijn (ongeveer) normaal verdeeld.
➔ Gevolg van deze voorwaarde: dichotome afhankelijke variabelen (hebben maar twee
waarden zoals hoog versus laag) NIET toegestaan in een lineaire regressie analyse →
want dan krijg je geen normale verdeling.
Clip 2: Mediatie
Les avantages d'acheter des résumés chez Stuvia:
Qualité garantie par les avis des clients
Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.
L’achat facile et rapide
Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.
Focus sur l’essentiel
Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.
Foire aux questions
Qu'est-ce que j'obtiens en achetant ce document ?
Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.
Garantie de remboursement : comment ça marche ?
Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.
Auprès de qui est-ce que j'achète ce résumé ?
Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur ilsevanosenbruggen. Stuvia facilite les paiements au vendeur.
Est-ce que j'aurai un abonnement?
Non, vous n'achetez ce résumé que pour €3,96. Vous n'êtes lié à rien après votre achat.