Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
Summary Statistics II 2.2 €10,49
Ajouter au panier

Resume

Summary Statistics II 2.2

1 vérifier
 8 fois vendu
  • Cours
  • Établissement

Summary of the books for course 2.2 statistics

Aperçu 2 sur 25  pages

  • 16 février 2020
  • 25
  • 2019/2020
  • Resume

1  vérifier

review-writer-avatar

Par: 618533il • 1 année de cela

avatar-seller
BOOK M&M&C
CHAPTER 8: INFERENCE FOR PROPORTIONS
8.1 INFERENCE FOR SINGLE PROPORTION
Proportion:refers to the fraction of the total that possesses a certain attribute
LARGE SAMPLE CONFIDENCE INTERVAL
 Inference about a population proportion p from SRS of size n is based on the sample
proportion ^p= X /n
o X is number of successes
o When n is large, ^p has approximately the Normal distribution as size increases with
mean p and standard deviation S ^p= √ p(1− p)/n
 The level C large-sample confidence interval is ^p ± m
o Recommend using interval for 90%, 95%, and 99% confidence when number of
successes and failures are both at least 10 (so can use normal approximation) and
data produced by random sample
 For large samples, the margin of error for confidence level C is m=z∗SE ^p
o Critical value z* is the value for the standard Normal density curve with area C
between −z* and z*
p^ (1− p^ )
 Standard error of ^p is SE ^p=
√ n

SMALLER SAMPLE SIZE
 Alternative procedures such as the plus four estimate of the population proportion are
X +2
recommended ~ p= (add four imaginary observations, two successes and two failures)
n+ 4
o Mean ~ p
~
p ( 1−~
p)
o Standard deviation

( n+4 )
o Use large-sample confidence but with ~ p

SIGNIFICANCE TEST (hypothesis)
p^ − p 0
z=
 Tests of H0: p=p0 are based on the z statistic p 0(1−p 0)
√ n
o P-values calculated from the N(0,1) distribution. Use this procedure when expected
number of successes np0 and expected number of failures n(1−p0), are both at
least 10
o Find P-value by calculating probability of getting z statistic this large or larger in the
direction specified by the alternative hypothesis

CHOOSING SAMPLE SIZE
 The sample size required to obtain a confidence interval of approximate margin of error m
for a proportion is found from n=¿ ¿
1

, o p* is a guessed value for the proportion of successes in the future sample
o z* is the standard Normal critical value for the desired level of confidence
o To ensure that the margin of error of the interval is less than or equal to m if guess
1
p¿=0.5 then n= ¿ ¿
4
 Software can be used to determine the sample sizes for significant tests (power)

8.2 COMPARING TWO PROPORTIONS ( p1∧ p2)
LARGE SAMPLE CONFIDENCE INTERVAL
 The large-sample estimate of the difference in two population proportions is D= ^p 1−^p 2
X1 X2
o ^p1− ^p2 are the sample proportions: ^p1= and ^p2=
n1 n2
o Sampling distribution of ^p1− ^p2 with mean p1− p2 is approximately Normal with
larger sample size
 The large-sample level C confidence interval is D ± m
o Recommend using interval for 90%, 95%, or 99% confidence when number of
successes and failures in both samples are at least 10 and are random samples
 The margin of error for confidence level C is m=z∗SE D
o z* is the value for standard Normal density curve with area C between −z* and z*
^p1 (1−^p1) ^p2 (1−^p 2)
 The standard error of the difference D is SED =
√ n1
+
n2

PLUS-FOUR CONFIDENCE INTERVAL
 For smaller sample sizes, the plus four estimate (sample size at least 5) of the difference in
two population proportions is recommended
 Add two imaginary observations, one success and one failure to each of the two samples
~p (1−~ p1 ) ~
p ( 1−~ p2 )
 Confidence interval (~
p1−~

p2 ¿ ± z ¿ 1
n1 + 2
+ 2
n2 + 2

SIGNIFICANCE TEST (hypothesis)
^p1−^p2
 Significance tests of comparing two proportions (H0: p1=p2) use the z statistic z=
SE Dp
X1+ X2
o The pooled estimate of the common value of p1 and p2 is ^p=
n1 +n 2
1 1

o The pooled standard error is SEDp = ^p (1−^p )
( +
n1 n2 )
o Use this test when the number of successes and the number of failures in each of
the samples are at least 5 + SRS + population at least 10 times as large as samples
1
 Sample size for desired margin of error is given by n=
2 ()
¿ ¿ if p∗¿1 ¿ and p∗¿2 ¿ = 0.5

^p1
 Relative risk is the ratio of two sample proportions RR= for SPSS
^p2
2

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur dabad23. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour €10,49. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

70057 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
€10,49  8x  vendu
  • (1)
Ajouter au panier
Ajouté